1 | SUBROUTINE SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) |
---|
2 | * .. Scalar Arguments .. |
---|
3 | REAL ALPHA |
---|
4 | INTEGER INCX,INCY,LDA,M,N |
---|
5 | * .. |
---|
6 | * .. Array Arguments .. |
---|
7 | REAL A(LDA,*),X(*),Y(*) |
---|
8 | * .. |
---|
9 | * |
---|
10 | * Purpose |
---|
11 | * ======= |
---|
12 | * |
---|
13 | * SGER performs the rank 1 operation |
---|
14 | * |
---|
15 | * A := alpha*x*y' + A, |
---|
16 | * |
---|
17 | * where alpha is a scalar, x is an m element vector, y is an n element |
---|
18 | * vector and A is an m by n matrix. |
---|
19 | * |
---|
20 | * Arguments |
---|
21 | * ========== |
---|
22 | * |
---|
23 | * M - INTEGER. |
---|
24 | * On entry, M specifies the number of rows of the matrix A. |
---|
25 | * M must be at least zero. |
---|
26 | * Unchanged on exit. |
---|
27 | * |
---|
28 | * N - INTEGER. |
---|
29 | * On entry, N specifies the number of columns of the matrix A. |
---|
30 | * N must be at least zero. |
---|
31 | * Unchanged on exit. |
---|
32 | * |
---|
33 | * ALPHA - REAL . |
---|
34 | * On entry, ALPHA specifies the scalar alpha. |
---|
35 | * Unchanged on exit. |
---|
36 | * |
---|
37 | * X - REAL array of dimension at least |
---|
38 | * ( 1 + ( m - 1 )*abs( INCX ) ). |
---|
39 | * Before entry, the incremented array X must contain the m |
---|
40 | * element vector x. |
---|
41 | * Unchanged on exit. |
---|
42 | * |
---|
43 | * INCX - INTEGER. |
---|
44 | * On entry, INCX specifies the increment for the elements of |
---|
45 | * X. INCX must not be zero. |
---|
46 | * Unchanged on exit. |
---|
47 | * |
---|
48 | * Y - REAL array of dimension at least |
---|
49 | * ( 1 + ( n - 1 )*abs( INCY ) ). |
---|
50 | * Before entry, the incremented array Y must contain the n |
---|
51 | * element vector y. |
---|
52 | * Unchanged on exit. |
---|
53 | * |
---|
54 | * INCY - INTEGER. |
---|
55 | * On entry, INCY specifies the increment for the elements of |
---|
56 | * Y. INCY must not be zero. |
---|
57 | * Unchanged on exit. |
---|
58 | * |
---|
59 | * A - REAL array of DIMENSION ( LDA, n ). |
---|
60 | * Before entry, the leading m by n part of the array A must |
---|
61 | * contain the matrix of coefficients. On exit, A is |
---|
62 | * overwritten by the updated matrix. |
---|
63 | * |
---|
64 | * LDA - INTEGER. |
---|
65 | * On entry, LDA specifies the first dimension of A as declared |
---|
66 | * in the calling (sub) program. LDA must be at least |
---|
67 | * max( 1, m ). |
---|
68 | * Unchanged on exit. |
---|
69 | * |
---|
70 | * |
---|
71 | * Level 2 Blas routine. |
---|
72 | * |
---|
73 | * -- Written on 22-October-1986. |
---|
74 | * Jack Dongarra, Argonne National Lab. |
---|
75 | * Jeremy Du Croz, Nag Central Office. |
---|
76 | * Sven Hammarling, Nag Central Office. |
---|
77 | * Richard Hanson, Sandia National Labs. |
---|
78 | * |
---|
79 | * |
---|
80 | * .. Parameters .. |
---|
81 | REAL ZERO |
---|
82 | PARAMETER (ZERO=0.0E+0) |
---|
83 | * .. |
---|
84 | * .. Local Scalars .. |
---|
85 | REAL TEMP |
---|
86 | INTEGER I,INFO,IX,J,JY,KX |
---|
87 | * .. |
---|
88 | * .. External Subroutines .. |
---|
89 | EXTERNAL XERBLA |
---|
90 | * .. |
---|
91 | * .. Intrinsic Functions .. |
---|
92 | INTRINSIC MAX |
---|
93 | * .. |
---|
94 | * |
---|
95 | * Test the input parameters. |
---|
96 | * |
---|
97 | INFO = 0 |
---|
98 | IF (M.LT.0) THEN |
---|
99 | INFO = 1 |
---|
100 | ELSE IF (N.LT.0) THEN |
---|
101 | INFO = 2 |
---|
102 | ELSE IF (INCX.EQ.0) THEN |
---|
103 | INFO = 5 |
---|
104 | ELSE IF (INCY.EQ.0) THEN |
---|
105 | INFO = 7 |
---|
106 | ELSE IF (LDA.LT.MAX(1,M)) THEN |
---|
107 | INFO = 9 |
---|
108 | END IF |
---|
109 | IF (INFO.NE.0) THEN |
---|
110 | CALL XERBLA('SGER ',INFO) |
---|
111 | RETURN |
---|
112 | END IF |
---|
113 | * |
---|
114 | * Quick return if possible. |
---|
115 | * |
---|
116 | IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
---|
117 | * |
---|
118 | * Start the operations. In this version the elements of A are |
---|
119 | * accessed sequentially with one pass through A. |
---|
120 | * |
---|
121 | IF (INCY.GT.0) THEN |
---|
122 | JY = 1 |
---|
123 | ELSE |
---|
124 | JY = 1 - (N-1)*INCY |
---|
125 | END IF |
---|
126 | IF (INCX.EQ.1) THEN |
---|
127 | DO 20 J = 1,N |
---|
128 | IF (Y(JY).NE.ZERO) THEN |
---|
129 | TEMP = ALPHA*Y(JY) |
---|
130 | DO 10 I = 1,M |
---|
131 | A(I,J) = A(I,J) + X(I)*TEMP |
---|
132 | 10 CONTINUE |
---|
133 | END IF |
---|
134 | JY = JY + INCY |
---|
135 | 20 CONTINUE |
---|
136 | ELSE |
---|
137 | IF (INCX.GT.0) THEN |
---|
138 | KX = 1 |
---|
139 | ELSE |
---|
140 | KX = 1 - (M-1)*INCX |
---|
141 | END IF |
---|
142 | DO 40 J = 1,N |
---|
143 | IF (Y(JY).NE.ZERO) THEN |
---|
144 | TEMP = ALPHA*Y(JY) |
---|
145 | IX = KX |
---|
146 | DO 30 I = 1,M |
---|
147 | A(I,J) = A(I,J) + X(IX)*TEMP |
---|
148 | IX = IX + INCX |
---|
149 | 30 CONTINUE |
---|
150 | END IF |
---|
151 | JY = JY + INCY |
---|
152 | 40 CONTINUE |
---|
153 | END IF |
---|
154 | * |
---|
155 | RETURN |
---|
156 | * |
---|
157 | * End of SGER . |
---|
158 | * |
---|
159 | END |
---|