1 | # This computes the univariate smoothing spline, automatically choosing |
---|
2 | # the smoothing parameter by minimizing generalized cross validation. It |
---|
3 | # was written by Finbarr O'Sullivan using the scheme described in |
---|
4 | # "Comments on Dr. Silverman's Paper", J. Royal Statistical Society B |
---|
5 | # (1985) 47, pp.39-40. |
---|
6 | # This version was installed in netlib 14 Mar 1987. |
---|
7 | # Remember to check whether your program needs to square or sqrt the |
---|
8 | # weights before calling this (or any other) least squares routine. |
---|
9 | # The code has been slightly modified by Trevor Hastie and Eric Grosse |
---|
10 | # to use de Boor's spline routines from netlib/pppack. Also, auxiliary |
---|
11 | # routines "setreg" (for sorting and standardizing the range of the data) |
---|
12 | # and "sknotl" (for filling the knot array) have been appended. |
---|
13 | |
---|
14 | |
---|
15 | subroutine sbart(xs,ys,ws,n,knot,nk, |
---|
16 | coef,sz,lev, |
---|
17 | crit,icrit,spar,ispar,lspar,uspar,tol, |
---|
18 | isetup, |
---|
19 | xwy, |
---|
20 | hs0,hs1,hs2,hs3, |
---|
21 | sg0,sg1,sg2,sg3, |
---|
22 | abd,p1ip,p2ip,ld4,ldnk,ier) |
---|
23 | |
---|
24 | |
---|
25 | # A Cubic B-spline Smoothing routine. |
---|
26 | |
---|
27 | # |
---|
28 | # The algorithm minimises: |
---|
29 | # |
---|
30 | # (1/n) * sum ws(i)**2 * (ys(i)-sz(i))**2 + lambda* int ( sz"(xs) )**2 dxs |
---|
31 | # |
---|
32 | # lambda is a function of the spar which is assumed to be between |
---|
33 | # 0 and 1 |
---|
34 | |
---|
35 | |
---|
36 | # Input |
---|
37 | |
---|
38 | # n number of data points |
---|
39 | # ys(n) vector of length n containing the observations |
---|
40 | # ws(n) vector containing the weights given to each data point |
---|
41 | # xs(n) vector containing the ordinates of the observations |
---|
42 | |
---|
43 | |
---|
44 | # nk number of b-spline coefficients to be estimated |
---|
45 | # nk <= n+2 |
---|
46 | # knot(nk+4) vector of knot points defining the cubic b-spline basis. |
---|
47 | |
---|
48 | |
---|
49 | # spar penalised likelihood smoothing parameter |
---|
50 | # ispar indicator saying if spar is supplied or to be estimated |
---|
51 | # lspar, uspar lower and upper values for spar 0.,1. are good values |
---|
52 | # tol used in Golden Search routine |
---|
53 | |
---|
54 | # isetup setup indicator |
---|
55 | |
---|
56 | # icrit indicator saying which cross validation score |
---|
57 | # is to be computed |
---|
58 | |
---|
59 | # ld4 the leading dimension of abd (ie ld4=4) |
---|
60 | # ldnk the leading dimension of p2ip (not referenced) |
---|
61 | |
---|
62 | |
---|
63 | # Output |
---|
64 | |
---|
65 | # coef(nk) vector of spline coefficients |
---|
66 | # sz(n) vector of smoothed z-values |
---|
67 | # lev(n) vector of leverages |
---|
68 | # crit either ordinary of generalized CV score |
---|
69 | # ier error indicator |
---|
70 | # ier = 0 ___ everything fine |
---|
71 | # ier = 1 ___ spar too small or too big |
---|
72 | # problem in cholesky decomposition |
---|
73 | |
---|
74 | |
---|
75 | |
---|
76 | # Working arrays/matrix |
---|
77 | # xwy X'Wy |
---|
78 | # hs0,hs1,hs2,hs3 the diagonals of the X'WX matrix |
---|
79 | # sg0,sg1,sg2,sg3 the diagonals of the Gram matrix |
---|
80 | # abd(ld4,nk) [ X'WX+lambda*SIGMA] in diagonal form |
---|
81 | # p1ip(ld4,nk) inner products between columns of L inverse |
---|
82 | # p2ip(ldnk,nk) all inner products between columns of L inverse |
---|
83 | # L'L = [X'WX+lambdaSIGMA] NOT REFERENCED |
---|
84 | |
---|
85 | real xs(n),ys(n),ws(n), |
---|
86 | knot(nk+4), |
---|
87 | coef(nk),sz(n),lev(n), |
---|
88 | crit,spar,lspar,uspar,tol, |
---|
89 | xwy(nk), |
---|
90 | hs0(nk),hs1(nk),hs2(nk),hs3(nk), |
---|
91 | sg0(nk),sg1(nk),sg2(nk),sg3(nk), |
---|
92 | abd(ld4,nk),p1ip(ld4,nk),p2ip(ldnk,nk) |
---|
93 | |
---|
94 | |
---|
95 | integer n,nk,isetup,icrit,ispar,ld4,ldnk,ier |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | |
---|
100 | # Local variables |
---|
101 | |
---|
102 | real t1,t2,ratio, |
---|
103 | a,b,c,d,e,eps,xm,p,q,r,tol1,tol2,u,v,w, |
---|
104 | fu,fv,fw,fx,x, |
---|
105 | ax,bx |
---|
106 | |
---|
107 | integer i |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | # Compute SIGMA, X' W**2 X, X' W**2 z, trace ratio, s0, s1. |
---|
117 | |
---|
118 | # SIGMA -> sg0,sg1,sg2,sg3 |
---|
119 | # X' W**2 X -> hs0,hs1,hs2,hs3 |
---|
120 | # X' W**2 Z -> xwy |
---|
121 | |
---|
122 | if(isetup==0){ |
---|
123 | call sgram(sg0,sg1,sg2,sg3,knot,nk) |
---|
124 | call stxwx(xs,ys,ws,n,knot,nk,xwy,hs0,hs1,hs2,hs3) |
---|
125 | # check |
---|
126 | # print 999;999 format(" got through check ") |
---|
127 | |
---|
128 | |
---|
129 | t1=0. ; t2=0. |
---|
130 | do i=3,nk-3 { t1 = t1 + hs0(i) } |
---|
131 | do i=3,nk-3 { t2 = t2 + sg0(i) } |
---|
132 | ratio = t1/t2 |
---|
133 | |
---|
134 | isetup = 1 } |
---|
135 | |
---|
136 | # check 1 |
---|
137 | # print 1999;1999 format(" got through check 1") |
---|
138 | |
---|
139 | |
---|
140 | # Compute estimate |
---|
141 | |
---|
142 | |
---|
143 | if(ispar==1) { # Value of spar supplied |
---|
144 | |
---|
145 | call sslvrg(xs,ys,ws,n,knot,nk, |
---|
146 | coef,sz,lev,crit,icrit, |
---|
147 | spar,ratio, |
---|
148 | xwy, |
---|
149 | hs0,hs1,hs2,hs3, |
---|
150 | sg0,sg1,sg2,sg3, |
---|
151 | abd,p1ip,p2ip,ld4,ldnk,ier) |
---|
152 | # check 2 |
---|
153 | # print 2999;2999 format(" got through check 2") |
---|
154 | |
---|
155 | return } |
---|
156 | |
---|
157 | else { |
---|
158 | |
---|
159 | # Use Forsythe Malcom and Moler routine to minimise criterion |
---|
160 | |
---|
161 | ax=lspar ; bx=uspar # f denotes the value of the criterion |
---|
162 | |
---|
163 | # |
---|
164 | # an approximation x to the point where f attains a minimum on |
---|
165 | # the interval (ax,bx) is determined. |
---|
166 | # |
---|
167 | # |
---|
168 | # input.. |
---|
169 | # |
---|
170 | # ax left endpoint of initial interval |
---|
171 | # bx right endpoint of initial interval |
---|
172 | # f function subprogram which evaluates f(x) for any x |
---|
173 | # in the interval (ax,bx) |
---|
174 | # tol desired length of the interval of uncertainty of the final |
---|
175 | # result ( .ge. 0.0) |
---|
176 | # |
---|
177 | # |
---|
178 | # output.. |
---|
179 | # |
---|
180 | # fmin abcissa approximating the point where f attains a minimum |
---|
181 | # |
---|
182 | # |
---|
183 | # the method used is a combination of golden section search and |
---|
184 | # successive parabolic interpolation. convergence is never much slower |
---|
185 | # than that for a fibonacci search. if f has a continuous second |
---|
186 | # derivative which is positive at the minimum (which is not at ax or |
---|
187 | # bx), then convergence is superlinear, and usually of the order of |
---|
188 | # about 1.324.... |
---|
189 | # the function f is never evaluated at two points closer together |
---|
190 | # than eps*abs(fmin) + (tol/3), where eps is approximately the square |
---|
191 | # root of the relative machine precision. if f is a unimodal |
---|
192 | # function and the computed values of f are always unimodal when |
---|
193 | # separated by at least eps*abs(x) + (tol/3), then fmin approximates |
---|
194 | # the abcissa of the global minimum of f on the interval ax,bx with |
---|
195 | # an error less than 3*eps*abs(fmin) + tol. if f is not unimodal, |
---|
196 | # then fmin may approximate a local, but perhaps non-global, minimum to |
---|
197 | # the same accuracy. |
---|
198 | # this function subprogram is a slightly modified version of the |
---|
199 | # algol 60 procedure localmin given in richard brent, algorithms for |
---|
200 | # minimization without derivatives, prentice - hall, inc. (1973). |
---|
201 | # |
---|
202 | # |
---|
203 | # real a,b,c,d,e,eps,xm,p,q,r,tol1,tol2,u,v,w |
---|
204 | # real fu,fv,fw,fx,x |
---|
205 | # |
---|
206 | # c is the squared inverse of the golden ratio |
---|
207 | # |
---|
208 | c = 0.5*(3. - sqrt(5.0)) |
---|
209 | # |
---|
210 | # eps is approximately the square root of the relative machine |
---|
211 | # precision. |
---|
212 | # |
---|
213 | eps = 1.00 |
---|
214 | 10 eps = eps/2.00 |
---|
215 | tol1 = 1.0 + eps |
---|
216 | if (tol1 .gt. 1.00) go to 10 |
---|
217 | eps = sqrt(eps) |
---|
218 | # |
---|
219 | # initialization |
---|
220 | # |
---|
221 | a = ax |
---|
222 | b = bx |
---|
223 | v = a + c*(b - a) |
---|
224 | w = v |
---|
225 | x = v |
---|
226 | e = 0.0 |
---|
227 | |
---|
228 | spar = x |
---|
229 | call sslvrg(xs,ys,ws,n,knot,nk, |
---|
230 | coef,sz,lev,crit,icrit, |
---|
231 | spar,ratio, |
---|
232 | xwy, |
---|
233 | hs0,hs1,hs2,hs3, |
---|
234 | sg0,sg1,sg2,sg3, |
---|
235 | abd,p1ip,p2ip,ld4,ldnk,ier) |
---|
236 | |
---|
237 | fx = crit |
---|
238 | fv = fx |
---|
239 | fw = fx |
---|
240 | # |
---|
241 | # main loop starts here |
---|
242 | # |
---|
243 | 20 xm = 0.5*(a + b) |
---|
244 | tol1 = eps*abs(x) + tol/3.0 |
---|
245 | tol2 = 2.0*tol1 |
---|
246 | # |
---|
247 | # check stopping criterion |
---|
248 | # |
---|
249 | if (abs(x - xm) .le. (tol2 - 0.5*(b - a))) go to 90 |
---|
250 | # |
---|
251 | # is golden-section necessary |
---|
252 | # |
---|
253 | if (abs(e) .le. tol1) go to 40 |
---|
254 | # |
---|
255 | # fit parabola |
---|
256 | # |
---|
257 | r = (x - w)*(fx - fv) |
---|
258 | q = (x - v)*(fx - fw) |
---|
259 | p = (x - v)*q - (x - w)*r |
---|
260 | q = 2.00*(q - r) |
---|
261 | if (q .gt. 0.0) p = -p |
---|
262 | q = abs(q) |
---|
263 | r = e |
---|
264 | e = d |
---|
265 | # |
---|
266 | # is parabola acceptable |
---|
267 | # |
---|
268 | 30 if (abs(p) .ge. abs(0.5*q*r)) go to 40 |
---|
269 | if (p .le. q*(a - x)) go to 40 |
---|
270 | if (p .ge. q*(b - x)) go to 40 |
---|
271 | # |
---|
272 | # a parabolic interpolation step |
---|
273 | # |
---|
274 | d = p/q |
---|
275 | u = x + d |
---|
276 | # |
---|
277 | # f must not be evaluated too close to ax or bx |
---|
278 | # |
---|
279 | if ((u - a) .lt. tol2) d = sign(tol1, xm - x) |
---|
280 | if ((b - u) .lt. tol2) d = sign(tol1, xm - x) |
---|
281 | go to 50 |
---|
282 | # |
---|
283 | # a golden-section step |
---|
284 | # |
---|
285 | 40 if (x .ge. xm) e = a - x |
---|
286 | if (x .lt. xm) e = b - x |
---|
287 | d = c*e |
---|
288 | # |
---|
289 | # f must not be evaluated too close to x |
---|
290 | # |
---|
291 | 50 if (abs(d) .ge. tol1) u = x + d |
---|
292 | if (abs(d) .lt. tol1) u = x + sign(tol1, d) |
---|
293 | |
---|
294 | spar = u |
---|
295 | call sslvrg(xs,ys,ws,n,knot,nk, |
---|
296 | coef,sz,lev,crit,icrit, |
---|
297 | spar,ratio, |
---|
298 | xwy, |
---|
299 | hs0,hs1,hs2,hs3, |
---|
300 | sg0,sg1,sg2,sg3, |
---|
301 | abd,p1ip,p2ip,ld4,ldnk,ier) |
---|
302 | |
---|
303 | fu = crit |
---|
304 | # |
---|
305 | # update a, b, v, w, and x |
---|
306 | # |
---|
307 | if (fu .gt. fx) go to 60 |
---|
308 | if (u .ge. x) a = x |
---|
309 | if (u .lt. x) b = x |
---|
310 | v = w |
---|
311 | fv = fw |
---|
312 | w = x |
---|
313 | fw = fx |
---|
314 | x = u |
---|
315 | fx = fu |
---|
316 | go to 20 |
---|
317 | 60 if (u .lt. x) a = u |
---|
318 | if (u .ge. x) b = u |
---|
319 | if (fu .le. fw) go to 70 |
---|
320 | if (w .eq. x) go to 70 |
---|
321 | if (fu .le. fv) go to 80 |
---|
322 | if (v .eq. x) go to 80 |
---|
323 | if (v .eq. w) go to 80 |
---|
324 | go to 20 |
---|
325 | 70 v = w |
---|
326 | fv = fw |
---|
327 | w = u |
---|
328 | fw = fu |
---|
329 | go to 20 |
---|
330 | 80 v = u |
---|
331 | fv = fu |
---|
332 | go to 20 |
---|
333 | # |
---|
334 | # end of main loop |
---|
335 | # |
---|
336 | 90 continue ; spar = x ; crit = fx |
---|
337 | return } |
---|
338 | |
---|
339 | |
---|
340 | |
---|
341 | |
---|
342 | |
---|
343 | return |
---|
344 | end |
---|
345 | subroutine sgram(sg0,sg1,sg2,sg3,tb,nb) |
---|
346 | |
---|
347 | real sg0(nb),sg1(nb),sg2(nb),sg3(nb),tb(nb+4), |
---|
348 | vnikx(4,3),work(16),yw1(4),yw2(4), |
---|
349 | wpt |
---|
350 | |
---|
351 | integer nb,ileft,ilo,mflag, |
---|
352 | i,ii,jj # indices |
---|
353 | |
---|
354 | |
---|
355 | #PURPOSE |
---|
356 | |
---|
357 | # Calculation of the cubic B-spline smoothness prior |
---|
358 | # for "usual" interior knot setup. |
---|
359 | |
---|
360 | |
---|
361 | # Uses BSPVD and INTRV in the CMLIB |
---|
362 | |
---|
363 | |
---|
364 | |
---|
365 | |
---|
366 | # sgm[0-3](nb) Symmetric matrix |
---|
367 | # whose (i,j)'th element contains the integral of |
---|
368 | # B''(i,.) B''(j,.) , i=1,2 ... nb and j=i,...nb. |
---|
369 | # Only the upper four diagonals are computed. |
---|
370 | |
---|
371 | |
---|
372 | #Initialise the sigma vectors |
---|
373 | do i=1,nb{ sg0(i)=0.;sg1(i)=0.;sg2(i)=0.;sg3(i)=0.} |
---|
374 | |
---|
375 | ilo = 1 |
---|
376 | |
---|
377 | do i=1,nb { |
---|
378 | |
---|
379 | # Calculate a linear approximation to the |
---|
380 | # second derivative of the non-zero B-splines |
---|
381 | # over the interval [tb(i),tb(i+1)]. |
---|
382 | |
---|
383 | #call intrv(tb(1),(nb+1),tb(i),ilo,ileft,mflag) |
---|
384 | call interv(tb(1),(nb+1),tb(i),ileft,mflag) |
---|
385 | |
---|
386 | |
---|
387 | #Left end second derivatives |
---|
388 | #call bspvd (tb,4,3,tb(i),ileft,4,vnikx,work) |
---|
389 | call bsplvd (tb,4,tb(i),ileft,work,vnikx,3) |
---|
390 | |
---|
391 | # Put values into yw1 |
---|
392 | do ii=1,4 { yw1(ii) = vnikx(ii,3) } |
---|
393 | |
---|
394 | |
---|
395 | #Right end second derivatives |
---|
396 | #call bspvd (tb,4,3,tb(i+1),ileft,4,vnikx,work) |
---|
397 | call bsplvd (tb,4,tb(i+1),ileft,work,vnikx,3) |
---|
398 | |
---|
399 | |
---|
400 | # Slope*(length of interval) in Linear Approximation to B'' |
---|
401 | do ii=1,4 { yw2(ii) = vnikx(ii,3) - yw1(ii) } |
---|
402 | wpt = tb(i+1) - tb(i) |
---|
403 | |
---|
404 | |
---|
405 | # Calculate Contributions to the simga vectors |
---|
406 | |
---|
407 | if(ileft>=4){ |
---|
408 | do ii=1,4 { |
---|
409 | |
---|
410 | jj=ii |
---|
411 | sg0(ileft-4+ii) = sg0(ileft-4+ii) + |
---|
412 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
413 | yw2(ii)*yw2(jj)*.3330 ) |
---|
414 | jj=ii+1 |
---|
415 | if(jj<=4) {sg1(ileft+ii-4) = sg1(ileft+ii-4) + |
---|
416 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
417 | yw2(ii)*yw2(jj)*.3330 )} |
---|
418 | jj=ii+2 |
---|
419 | if(jj<=4) {sg2(ileft+ii-4) = sg2(ileft+ii-4) + |
---|
420 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
421 | yw2(ii)*yw2(jj)*.3330 )} |
---|
422 | jj=ii+3 |
---|
423 | if(jj<=4) {sg3(ileft+ii-4) = sg3(ileft+ii-4) + |
---|
424 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
425 | yw2(ii)*yw2(jj)*.3330 )} |
---|
426 | |
---|
427 | } |
---|
428 | } |
---|
429 | |
---|
430 | else if(ileft==3){ |
---|
431 | do ii=1,3 { |
---|
432 | |
---|
433 | jj=ii |
---|
434 | sg0(ileft-3+ii) = sg0(ileft-3+ii) + |
---|
435 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
436 | yw2(ii)*yw2(jj)*.3330 ) |
---|
437 | jj=ii+1 |
---|
438 | if(jj<=3) {sg1(ileft+ii-3) = sg1(ileft+ii-3) + |
---|
439 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
440 | yw2(ii)*yw2(jj)*.3330 )} |
---|
441 | jj=ii+2 |
---|
442 | if(jj<=3) {sg2(ileft+ii-3) = sg2(ileft+ii-3) + |
---|
443 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
444 | yw2(ii)*yw2(jj)*.3330 )} |
---|
445 | |
---|
446 | } |
---|
447 | } |
---|
448 | |
---|
449 | else if(ileft==2){ |
---|
450 | do ii=1,2 { |
---|
451 | |
---|
452 | jj=ii |
---|
453 | sg0(ileft-2+ii) = sg0(ileft-2+ii) + |
---|
454 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
455 | yw2(ii)*yw2(jj)*.3330 ) |
---|
456 | jj=ii+1 |
---|
457 | if(jj<=2) {sg1(ileft+ii-2) = sg1(ileft+ii-2) + |
---|
458 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
459 | yw2(ii)*yw2(jj)*.3330 )} |
---|
460 | |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | else if(ileft==1){ |
---|
465 | do ii=1,1 { |
---|
466 | |
---|
467 | jj=ii |
---|
468 | sg0(ileft-1+ii) = sg0(ileft-1+ii) + |
---|
469 | wpt* (yw1(ii)*yw1(jj) + (yw2(ii)*yw1(jj) + yw2(jj)*yw1(ii))*.50 + |
---|
470 | yw2(ii)*yw2(jj)*.3330 ) |
---|
471 | |
---|
472 | } |
---|
473 | }} |
---|
474 | |
---|
475 | |
---|
476 | return |
---|
477 | end |
---|
478 | subroutine sinerp(abd,ld4,nk,p1ip,p2ip,ldnk,flag) |
---|
479 | |
---|
480 | real abd(ld4,nk),p1ip(ld4,nk),p2ip(ldnk,nk), |
---|
481 | wjm3(3),wjm2(2),wjm1(1),c0,c1,c2,c3 |
---|
482 | |
---|
483 | integer flag,ld4,nk,ldnk,i,j,k |
---|
484 | |
---|
485 | |
---|
486 | |
---|
487 | |
---|
488 | # Purpose : Computes Inner Products between columns of L(-1) |
---|
489 | # where L = abd is a Banded Matrix with 3 subdiagonals |
---|
490 | |
---|
491 | # The algorithm works in two passes: |
---|
492 | # |
---|
493 | # Pass 1 computes (cj,ck) k=j,j-1,j-2,j-3 ,j=nk, .. 1 |
---|
494 | # Pass 2 computes (cj,ck) k<=j-4 (If flag == 1 ). |
---|
495 | # |
---|
496 | # A refinement of Elden's trick is used. |
---|
497 | # |
---|
498 | |
---|
499 | |
---|
500 | |
---|
501 | |
---|
502 | # Pass 1 |
---|
503 | |
---|
504 | |
---|
505 | wjm3(1)=0. ; wjm3(2)=0. ; wjm3(1)=0. |
---|
506 | wjm2(1)=0. ; wjm2(2)=0. |
---|
507 | wjm1(1)=0. |
---|
508 | |
---|
509 | do i=1,nk { j=nk-i+1 |
---|
510 | |
---|
511 | c0 = 1./abd(4,j) |
---|
512 | if(j<=nk-3) {c1 = abd(1,j+3)*c0 |
---|
513 | c2 = abd(2,j+2)*c0 |
---|
514 | c3 = abd(3,j+1)*c0 } |
---|
515 | else if(j==nk-2) {c1 = 0. |
---|
516 | c2 = abd(2,j+2)*c0 |
---|
517 | c3 = abd(3,j+1)*c0 } |
---|
518 | else if(j==nk-1) {c1 = 0. |
---|
519 | c2 = 0. |
---|
520 | c3 = abd(3,j+1)*c0 } |
---|
521 | else if(j==nk) {c1 = 0. |
---|
522 | c2 = 0. |
---|
523 | c3 = 0.} |
---|
524 | |
---|
525 | |
---|
526 | p1ip(1,j) = 0. - (c1*wjm3(1)+c2*wjm3(2)+c3*wjm3(3)) |
---|
527 | p1ip(2,j) = 0. - (c1*wjm3(2)+c2*wjm2(1)+c3*wjm2(2)) |
---|
528 | p1ip(3,j) = 0. - (c1*wjm3(3)+c2*wjm2(2)+c3*wjm1(1)) |
---|
529 | |
---|
530 | p1ip(4,j) = c0**2 + |
---|
531 | c1**2*wjm3(1)+2.*c1*c2*wjm3(2)+2.*c1*c3*wjm3(3) + |
---|
532 | c2**2*wjm2(1)+2.*c2*c3*wjm2(2) + |
---|
533 | c3**2*wjm1(1) |
---|
534 | |
---|
535 | wjm3(1)=wjm2(1) ; wjm3(2)=wjm2(2) ; wjm3(3)=p1ip(2,j) |
---|
536 | wjm2(1)=wjm1(1) ; wjm2(2)=p1ip(3,j) |
---|
537 | wjm1(1)=p1ip(4,j) |
---|
538 | |
---|
539 | } |
---|
540 | |
---|
541 | |
---|
542 | if(flag==0) {return} |
---|
543 | |
---|
544 | |
---|
545 | # Pass 2 |
---|
546 | |
---|
547 | |
---|
548 | else { # Compute p2ip |
---|
549 | |
---|
550 | do i=1,nk { j=nk-i+1 |
---|
551 | for(k=1;k<=4 & j+k-1<=nk;k=k+1) |
---|
552 | { p2ip(j,j+k-1) = p1ip(5-k,j) }} |
---|
553 | |
---|
554 | |
---|
555 | do i=1,nk { j=nk-i+1 |
---|
556 | for(k=j-4;k>=1;k=k-1){ |
---|
557 | |
---|
558 | c0 = 1./abd(4,k) ; c1 = abd(1,k+3)*c0 |
---|
559 | c2 = abd(2,k+2)*c0 ; c3 = abd(3,k+1)*c0 |
---|
560 | |
---|
561 | p2ip(k,j) = 0. - ( c1*p2ip(k+3,j) + |
---|
562 | c2*p2ip(k+2,j) + |
---|
563 | c3*p2ip(k+1,j) ) } |
---|
564 | } |
---|
565 | |
---|
566 | return |
---|
567 | |
---|
568 | } |
---|
569 | |
---|
570 | |
---|
571 | end |
---|
572 | subroutine sslvrg(x,y,w,n,knot,nk, |
---|
573 | coef,sz,lev, |
---|
574 | crit,icrit, |
---|
575 | spar,ratio, |
---|
576 | xwy, |
---|
577 | hs0,hs1,hs2,hs3, |
---|
578 | sg0,sg1,sg2,sg3, |
---|
579 | abd,p1ip,p2ip,ld4,ldnk,info) |
---|
580 | |
---|
581 | |
---|
582 | real x(n),y(n),w(n), |
---|
583 | knot(nk+4), |
---|
584 | coef(nk),sz(n),lev(n), |
---|
585 | crit, |
---|
586 | ratio,spar, |
---|
587 | xwy(nk), |
---|
588 | hs0(nk),hs1(nk),hs2(nk),hs3(nk), |
---|
589 | sg0(nk),sg1(nk),sg2(nk),sg3(nk), |
---|
590 | abd(ld4,nk),p1ip(ld4,nk),p2ip(ldnk,nk), |
---|
591 | lambda, |
---|
592 | b0,b1,b2,b3,eps, |
---|
593 | vnikx(4,1),work(16), |
---|
594 | # xv,bvalu,rss,df |
---|
595 | xv,bvalu2,rss,df |
---|
596 | |
---|
597 | |
---|
598 | |
---|
599 | integer n,nk,icrit,ld4,ldnk,i,icoef,ileft,ilo,info,j,mflag |
---|
600 | |
---|
601 | ilo = 1 ; eps = .1e-10 |
---|
602 | |
---|
603 | # Purpose : Solves the smoothing problem and computes the |
---|
604 | # criterion function (OCV or GCV). |
---|
605 | |
---|
606 | |
---|
607 | # The coeficients of estimated smooth |
---|
608 | |
---|
609 | lambda = ratio*16.**(-2. + spar*(6.)) |
---|
610 | |
---|
611 | do i=1,nk { coef(i) = xwy(i) } |
---|
612 | do i=1,nk { abd(4,i) = hs0(i)+lambda*sg0(i) } |
---|
613 | do i=1,(nk-1) { abd(3,i+1) = hs1(i)+lambda*sg1(i) } |
---|
614 | do i=1,(nk-2) { abd(2,i+2) = hs2(i)+lambda*sg2(i) } |
---|
615 | do i=1,(nk-3) { abd(1,i+3) = hs3(i)+lambda*sg3(i) } |
---|
616 | |
---|
617 | |
---|
618 | call spbfa(abd,ld4,nk,3,info) |
---|
619 | if(info.ne.0) { return } |
---|
620 | call spbsl(abd,ld4,nk,3,coef) |
---|
621 | |
---|
622 | |
---|
623 | # Value of smooth at the data points |
---|
624 | |
---|
625 | icoef = 1 |
---|
626 | do i=1,n { xv = x(i) |
---|
627 | #sz(i) = bvalu(knot,coef, |
---|
628 | # nk,4,0,xv,icoef,work(1)) } |
---|
629 | sz(i) = bvalu2(knot,coef, |
---|
630 | nk,4,xv,0) |
---|
631 | } |
---|
632 | |
---|
633 | |
---|
634 | # Compute the criterion function if requested |
---|
635 | |
---|
636 | if(icrit==0) { return} |
---|
637 | |
---|
638 | else { # Ordinary or Generalized CV |
---|
639 | |
---|
640 | # Get Leverages First |
---|
641 | |
---|
642 | call sinerp(abd,ld4,nk,p1ip,p2ip,ldnk,0) |
---|
643 | |
---|
644 | do i=1,n { xv = x(i) |
---|
645 | #call intrv(knot(1),(nk+1),xv,ilo,ileft,mflag) |
---|
646 | call interv(knot(1),(nk+1),xv,ileft,mflag) |
---|
647 | |
---|
648 | if(mflag==-1) { ileft = 4 ; xv = knot(4)+eps } |
---|
649 | if(mflag==1) { ileft = nk ; xv = knot(nk+1)-eps } |
---|
650 | j=ileft-3 |
---|
651 | #call bspvd(knot,4,1,xv,ileft,4,vnikx,work) |
---|
652 | call bsplvd(knot,4,xv,ileft,work,vnikx,1) |
---|
653 | |
---|
654 | b0=vnikx(1,1);b1=vnikx(2,1);b2=vnikx(3,1);b3=vnikx(4,1) |
---|
655 | |
---|
656 | lev(i) = (p1ip(4,j)*b0**2 + 2.*p1ip(3,j)*b0*b1 + |
---|
657 | 2.*p1ip(2,j)*b0*b2 + 2.*p1ip(1,j)*b0*b3 + |
---|
658 | p1ip(4,j+1)*b1**2 + 2.*p1ip(3,j+1)*b1*b2 + |
---|
659 | 2.*p1ip(2,j+1)*b1*b3 + |
---|
660 | p1ip(4,j+2)*b2**2 + 2.*p1ip(3,j+2)*b2*b3 + |
---|
661 | p1ip(4,j+3)*b3**2 )*w(i)**2 } |
---|
662 | |
---|
663 | |
---|
664 | |
---|
665 | |
---|
666 | |
---|
667 | # Evaluate Criterion |
---|
668 | |
---|
669 | if(icrit==1) { # Generalized CV |
---|
670 | |
---|
671 | rss = 0. ; df = 0. |
---|
672 | do i=1,n { rss = rss + ((y(i)-sz(i))*w(i))**2} |
---|
673 | do i=1,n { df = df + 1.-lev(i)} |
---|
674 | crit = (rss/n)/((df/n)**2) } |
---|
675 | |
---|
676 | else { # Ordinary CV |
---|
677 | |
---|
678 | crit = 0. |
---|
679 | do i=1,n { crit = crit + |
---|
680 | (((y(i)-sz(i))*w(i))/(1-lev(i)))**2 }} |
---|
681 | |
---|
682 | |
---|
683 | return } |
---|
684 | |
---|
685 | end |
---|
686 | subroutine stxwx(x,z,w,k,xknot,n,y,hs0,hs1,hs2,hs3) |
---|
687 | |
---|
688 | real z(k),w(k),x(k), |
---|
689 | xknot(n+4), |
---|
690 | y(n), |
---|
691 | hs0(n),hs1(n),hs2(n),hs3(n), |
---|
692 | |
---|
693 | eps,vnikx(4,1),work(16) # local |
---|
694 | |
---|
695 | integer k,n, |
---|
696 | |
---|
697 | j,i,ilo,ileft,mflag # local |
---|
698 | |
---|
699 | |
---|
700 | |
---|
701 | |
---|
702 | # Initialise the output vectors |
---|
703 | |
---|
704 | do i=1,n { y(i)=0. ; hs0(i)=0. ; hs1(i)=0. |
---|
705 | hs2(i)=0. ; hs3(i)=0. } |
---|
706 | |
---|
707 | |
---|
708 | # Compute X'WX -> hs0,hs1,hs2,hs3 and X'WZ -> y |
---|
709 | |
---|
710 | ilo=1 ; eps = .1e-9 |
---|
711 | |
---|
712 | do i=1,k { |
---|
713 | |
---|
714 | #call intrv(xknot(1),(n+1),x(i),ilo,ileft,mflag) |
---|
715 | call interv(xknot(1),(n+1),x(i),ileft,mflag) |
---|
716 | # check |
---|
717 | # print 999;999 format(" got through check stxwx1") |
---|
718 | |
---|
719 | |
---|
720 | if(mflag==-1) {write(6,'("Error in hess ",i2)')mflag;stop} |
---|
721 | if(mflag== 1) {if(x(i)<=(xknot(ileft)+eps)){ileft=ileft-1} |
---|
722 | else{write(6,'("Error in hess ",i2)')mflag;stop}} |
---|
723 | |
---|
724 | |
---|
725 | #call bspvd (xknot,4,1,x(i),ileft,4,vnikx,work) |
---|
726 | call bsplvd (xknot,4,x(i),ileft,work,vnikx,1) |
---|
727 | # check 2 |
---|
728 | # print 2999;2999 format(" got through check2 stxwx ") |
---|
729 | |
---|
730 | |
---|
731 | |
---|
732 | j= ileft-4+1 |
---|
733 | y(j) = y(j)+w(i)**2*z(i)*vnikx(1,1) |
---|
734 | hs0(j)=hs0(j)+w(i)**2*vnikx(1,1)**2 |
---|
735 | hs1(j)=hs1(j)+w(i)**2*vnikx(1,1)*vnikx(2,1) |
---|
736 | hs2(j)=hs2(j)+w(i)**2*vnikx(1,1)*vnikx(3,1) |
---|
737 | hs3(j)=hs3(j)+w(i)**2*vnikx(1,1)*vnikx(4,1) |
---|
738 | |
---|
739 | j= ileft-4+2 |
---|
740 | y(j) = y(j)+w(i)**2*z(i)*vnikx(2,1) |
---|
741 | hs0(j)=hs0(j)+w(i)**2*vnikx(2,1)**2 |
---|
742 | hs1(j)=hs1(j)+w(i)**2*vnikx(2,1)*vnikx(3,1) |
---|
743 | hs2(j)=hs2(j)+w(i)**2*vnikx(2,1)*vnikx(4,1) |
---|
744 | |
---|
745 | j= ileft-4+3 |
---|
746 | y(j) = y(j)+w(i)**2*z(i)*vnikx(3,1) |
---|
747 | hs0(j)=hs0(j)+w(i)**2*vnikx(3,1)**2 |
---|
748 | hs1(j)=hs1(j)+w(i)**2*vnikx(3,1)*vnikx(4,1) |
---|
749 | |
---|
750 | j= ileft-4+4 |
---|
751 | y(j) = y(j)+w(i)**2*z(i)*vnikx(4,1) |
---|
752 | hs0(j)=hs0(j)+w(i)**2*vnikx(4,1)**2 } |
---|
753 | |
---|
754 | return |
---|
755 | end |
---|
756 | subroutine sknotl(x,n,knot,k) |
---|
757 | |
---|
758 | real x(n),knot(n+6),a1,a2,a3,a4 |
---|
759 | integer n,k,ndk,j |
---|
760 | |
---|
761 | |
---|
762 | # Allocate knots acording to the cutoffs given below |
---|
763 | |
---|
764 | |
---|
765 | # Cutoff constants |
---|
766 | |
---|
767 | a1 = log(50.)/log(2.) ; a2 = log(100.)/log(2.) |
---|
768 | a3 = log(140.)/log(2.) ; a4 = log(200.)/log(2.) |
---|
769 | |
---|
770 | # Cutoff Criteria |
---|
771 | |
---|
772 | if(n<50) { ndk = n } |
---|
773 | else if (n>=50 & n<200) { ndk = 2.**(a1+(a2-a1)*(n-50.)/150.) } |
---|
774 | else if (n>=200 & n<800) { ndk = 2.**(a2+(a3-a2)*(n-200.)/600.) } |
---|
775 | else if (n>=800 & n<3200) { ndk = 2.**(a3+(a4-a3)*(n-800.)/2400.) } |
---|
776 | else if (n>=3200) { ndk = 200. + (n-3200)**.2 } |
---|
777 | |
---|
778 | k = ndk + 6 |
---|
779 | |
---|
780 | |
---|
781 | # Allocate Knots ( note no account is taken of any weighting vector ) |
---|
782 | |
---|
783 | do j=1,3 { knot(j) = x(1) } |
---|
784 | do j=1,ndk { knot(j+3) = x( 1 + (j-1)*(n-1)/(ndk-1) ) } |
---|
785 | do j=1,3 { knot(ndk+3+j) = x(n) } |
---|
786 | |
---|
787 | return |
---|
788 | end |
---|
789 | subroutine setreg(x,y,w,n,xw,nx,min,range,knot,nk) |
---|
790 | |
---|
791 | # sbart uses the square of the weights; the following rectifies that. |
---|
792 | # Also, the data is sorted (by a routine you may need to change for |
---|
793 | # your local machine) and standardized so that spar=1 gives a smooth fit |
---|
794 | # with sum(leverage values) about 2-4. |
---|
795 | |
---|
796 | real x(n),y(n),w(n),xw(n), |
---|
797 | min,range,knot(n+6) |
---|
798 | |
---|
799 | integer n,nk,nx |
---|
800 | |
---|
801 | |
---|
802 | # Local |
---|
803 | |
---|
804 | real eps |
---|
805 | integer ycnt,i,k |
---|
806 | |
---|
807 | |
---|
808 | call scopy(n,x,1,xw,1) |
---|
809 | #call ssort(x,w,n,2) |
---|
810 | #call ssort(xw,y,n,2) |
---|
811 | call sortpr(x,n,w) |
---|
812 | call sortpr(xw,n,y) |
---|
813 | |
---|
814 | range = x(n)-x(1) ; min = x(1) ; eps = .1e-9 |
---|
815 | do i=1,n { x(i) = (x(i)-min)/range } |
---|
816 | call scopy(n,x,1,xw,1) |
---|
817 | |
---|
818 | |
---|
819 | nx = 1 ; x(nx) = x(1) ; w(nx) = w(1) ; y(nx) = y(1)*w(1) ; |
---|
820 | |
---|
821 | for(i=2;i<=n;i=i+1) |
---|
822 | |
---|
823 | { if(xw(i)>x(nx)+eps) |
---|
824 | { if(w(nx)>0.0) y(nx) = y(nx)/w(nx) |
---|
825 | nx = nx + 1 |
---|
826 | x(nx) = x(i) |
---|
827 | y(nx) = y(i)*w(i) |
---|
828 | w(nx) = w(i) } |
---|
829 | else |
---|
830 | { y(nx) = y(nx)+y(i)*w(i) |
---|
831 | w(nx) = w(nx) + w(i) } |
---|
832 | } |
---|
833 | if(w(nx)>0.0) y(nx) = y(nx)/w(nx) |
---|
834 | |
---|
835 | for(i=1;i<=nx;i=i+1) |
---|
836 | { if (w(i)>0) w(i)=sqrt(w(i)) } |
---|
837 | |
---|
838 | |
---|
839 | call sknotl(x,nx,knot,k) ; nk = k-4 |
---|
840 | |
---|
841 | |
---|
842 | |
---|
843 | |
---|
844 | return |
---|
845 | end |
---|
846 | |
---|
847 | |
---|