1 | SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA) |
---|
2 | * .. Scalar Arguments .. |
---|
3 | DOUBLE PRECISION ALPHA |
---|
4 | INTEGER INCX,LDA,N |
---|
5 | CHARACTER UPLO |
---|
6 | * .. |
---|
7 | * .. Array Arguments .. |
---|
8 | DOUBLE PRECISION A(LDA,*),X(*) |
---|
9 | * .. |
---|
10 | * |
---|
11 | * Purpose |
---|
12 | * ======= |
---|
13 | * |
---|
14 | * DSYR performs the symmetric rank 1 operation |
---|
15 | * |
---|
16 | * A := alpha*x*x' + A, |
---|
17 | * |
---|
18 | * where alpha is a real scalar, x is an n element vector and A is an |
---|
19 | * n by n symmetric matrix. |
---|
20 | * |
---|
21 | * Arguments |
---|
22 | * ========== |
---|
23 | * |
---|
24 | * UPLO - CHARACTER*1. |
---|
25 | * On entry, UPLO specifies whether the upper or lower |
---|
26 | * triangular part of the array A is to be referenced as |
---|
27 | * follows: |
---|
28 | * |
---|
29 | * UPLO = 'U' or 'u' Only the upper triangular part of A |
---|
30 | * is to be referenced. |
---|
31 | * |
---|
32 | * UPLO = 'L' or 'l' Only the lower triangular part of A |
---|
33 | * is to be referenced. |
---|
34 | * |
---|
35 | * Unchanged on exit. |
---|
36 | * |
---|
37 | * N - INTEGER. |
---|
38 | * On entry, N specifies the order of the matrix A. |
---|
39 | * N must be at least zero. |
---|
40 | * Unchanged on exit. |
---|
41 | * |
---|
42 | * ALPHA - DOUBLE PRECISION. |
---|
43 | * On entry, ALPHA specifies the scalar alpha. |
---|
44 | * Unchanged on exit. |
---|
45 | * |
---|
46 | * X - DOUBLE PRECISION array of dimension at least |
---|
47 | * ( 1 + ( n - 1 )*abs( INCX ) ). |
---|
48 | * Before entry, the incremented array X must contain the n |
---|
49 | * element vector x. |
---|
50 | * Unchanged on exit. |
---|
51 | * |
---|
52 | * INCX - INTEGER. |
---|
53 | * On entry, INCX specifies the increment for the elements of |
---|
54 | * X. INCX must not be zero. |
---|
55 | * Unchanged on exit. |
---|
56 | * |
---|
57 | * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
---|
58 | * Before entry with UPLO = 'U' or 'u', the leading n by n |
---|
59 | * upper triangular part of the array A must contain the upper |
---|
60 | * triangular part of the symmetric matrix and the strictly |
---|
61 | * lower triangular part of A is not referenced. On exit, the |
---|
62 | * upper triangular part of the array A is overwritten by the |
---|
63 | * upper triangular part of the updated matrix. |
---|
64 | * Before entry with UPLO = 'L' or 'l', the leading n by n |
---|
65 | * lower triangular part of the array A must contain the lower |
---|
66 | * triangular part of the symmetric matrix and the strictly |
---|
67 | * upper triangular part of A is not referenced. On exit, the |
---|
68 | * lower triangular part of the array A is overwritten by the |
---|
69 | * lower triangular part of the updated matrix. |
---|
70 | * |
---|
71 | * LDA - INTEGER. |
---|
72 | * On entry, LDA specifies the first dimension of A as declared |
---|
73 | * in the calling (sub) program. LDA must be at least |
---|
74 | * max( 1, n ). |
---|
75 | * Unchanged on exit. |
---|
76 | * |
---|
77 | * |
---|
78 | * Level 2 Blas routine. |
---|
79 | * |
---|
80 | * -- Written on 22-October-1986. |
---|
81 | * Jack Dongarra, Argonne National Lab. |
---|
82 | * Jeremy Du Croz, Nag Central Office. |
---|
83 | * Sven Hammarling, Nag Central Office. |
---|
84 | * Richard Hanson, Sandia National Labs. |
---|
85 | * |
---|
86 | * |
---|
87 | * .. Parameters .. |
---|
88 | DOUBLE PRECISION ZERO |
---|
89 | PARAMETER (ZERO=0.0D+0) |
---|
90 | * .. |
---|
91 | * .. Local Scalars .. |
---|
92 | DOUBLE PRECISION TEMP |
---|
93 | INTEGER I,INFO,IX,J,JX,KX |
---|
94 | * .. |
---|
95 | * .. External Functions .. |
---|
96 | LOGICAL LSAME |
---|
97 | EXTERNAL LSAME |
---|
98 | * .. |
---|
99 | * .. External Subroutines .. |
---|
100 | EXTERNAL XERBLA |
---|
101 | * .. |
---|
102 | * .. Intrinsic Functions .. |
---|
103 | INTRINSIC MAX |
---|
104 | * .. |
---|
105 | * |
---|
106 | * Test the input parameters. |
---|
107 | * |
---|
108 | INFO = 0 |
---|
109 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
---|
110 | INFO = 1 |
---|
111 | ELSE IF (N.LT.0) THEN |
---|
112 | INFO = 2 |
---|
113 | ELSE IF (INCX.EQ.0) THEN |
---|
114 | INFO = 5 |
---|
115 | ELSE IF (LDA.LT.MAX(1,N)) THEN |
---|
116 | INFO = 7 |
---|
117 | END IF |
---|
118 | IF (INFO.NE.0) THEN |
---|
119 | CALL XERBLA('DSYR ',INFO) |
---|
120 | RETURN |
---|
121 | END IF |
---|
122 | * |
---|
123 | * Quick return if possible. |
---|
124 | * |
---|
125 | IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
---|
126 | * |
---|
127 | * Set the start point in X if the increment is not unity. |
---|
128 | * |
---|
129 | IF (INCX.LE.0) THEN |
---|
130 | KX = 1 - (N-1)*INCX |
---|
131 | ELSE IF (INCX.NE.1) THEN |
---|
132 | KX = 1 |
---|
133 | END IF |
---|
134 | * |
---|
135 | * Start the operations. In this version the elements of A are |
---|
136 | * accessed sequentially with one pass through the triangular part |
---|
137 | * of A. |
---|
138 | * |
---|
139 | IF (LSAME(UPLO,'U')) THEN |
---|
140 | * |
---|
141 | * Form A when A is stored in upper triangle. |
---|
142 | * |
---|
143 | IF (INCX.EQ.1) THEN |
---|
144 | DO 20 J = 1,N |
---|
145 | IF (X(J).NE.ZERO) THEN |
---|
146 | TEMP = ALPHA*X(J) |
---|
147 | DO 10 I = 1,J |
---|
148 | A(I,J) = A(I,J) + X(I)*TEMP |
---|
149 | 10 CONTINUE |
---|
150 | END IF |
---|
151 | 20 CONTINUE |
---|
152 | ELSE |
---|
153 | JX = KX |
---|
154 | DO 40 J = 1,N |
---|
155 | IF (X(JX).NE.ZERO) THEN |
---|
156 | TEMP = ALPHA*X(JX) |
---|
157 | IX = KX |
---|
158 | DO 30 I = 1,J |
---|
159 | A(I,J) = A(I,J) + X(IX)*TEMP |
---|
160 | IX = IX + INCX |
---|
161 | 30 CONTINUE |
---|
162 | END IF |
---|
163 | JX = JX + INCX |
---|
164 | 40 CONTINUE |
---|
165 | END IF |
---|
166 | ELSE |
---|
167 | * |
---|
168 | * Form A when A is stored in lower triangle. |
---|
169 | * |
---|
170 | IF (INCX.EQ.1) THEN |
---|
171 | DO 60 J = 1,N |
---|
172 | IF (X(J).NE.ZERO) THEN |
---|
173 | TEMP = ALPHA*X(J) |
---|
174 | DO 50 I = J,N |
---|
175 | A(I,J) = A(I,J) + X(I)*TEMP |
---|
176 | 50 CONTINUE |
---|
177 | END IF |
---|
178 | 60 CONTINUE |
---|
179 | ELSE |
---|
180 | JX = KX |
---|
181 | DO 80 J = 1,N |
---|
182 | IF (X(JX).NE.ZERO) THEN |
---|
183 | TEMP = ALPHA*X(JX) |
---|
184 | IX = JX |
---|
185 | DO 70 I = J,N |
---|
186 | A(I,J) = A(I,J) + X(IX)*TEMP |
---|
187 | IX = IX + INCX |
---|
188 | 70 CONTINUE |
---|
189 | END IF |
---|
190 | JX = JX + INCX |
---|
191 | 80 CONTINUE |
---|
192 | END IF |
---|
193 | END IF |
---|
194 | * |
---|
195 | RETURN |
---|
196 | * |
---|
197 | * End of DSYR . |
---|
198 | * |
---|
199 | END |
---|