1 | SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|
2 | * .. Scalar Arguments .. |
---|
3 | DOUBLE PRECISION ALPHA,BETA |
---|
4 | INTEGER K,LDA,LDB,LDC,M,N |
---|
5 | CHARACTER TRANSA,TRANSB |
---|
6 | * .. |
---|
7 | * .. Array Arguments .. |
---|
8 | DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) |
---|
9 | * .. |
---|
10 | * |
---|
11 | * Purpose |
---|
12 | * ======= |
---|
13 | * |
---|
14 | * DGEMM performs one of the matrix-matrix operations |
---|
15 | * |
---|
16 | * C := alpha*op( A )*op( B ) + beta*C, |
---|
17 | * |
---|
18 | * where op( X ) is one of |
---|
19 | * |
---|
20 | * op( X ) = X or op( X ) = X', |
---|
21 | * |
---|
22 | * alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
---|
23 | * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
---|
24 | * |
---|
25 | * Arguments |
---|
26 | * ========== |
---|
27 | * |
---|
28 | * TRANSA - CHARACTER*1. |
---|
29 | * On entry, TRANSA specifies the form of op( A ) to be used in |
---|
30 | * the matrix multiplication as follows: |
---|
31 | * |
---|
32 | * TRANSA = 'N' or 'n', op( A ) = A. |
---|
33 | * |
---|
34 | * TRANSA = 'T' or 't', op( A ) = A'. |
---|
35 | * |
---|
36 | * TRANSA = 'C' or 'c', op( A ) = A'. |
---|
37 | * |
---|
38 | * Unchanged on exit. |
---|
39 | * |
---|
40 | * TRANSB - CHARACTER*1. |
---|
41 | * On entry, TRANSB specifies the form of op( B ) to be used in |
---|
42 | * the matrix multiplication as follows: |
---|
43 | * |
---|
44 | * TRANSB = 'N' or 'n', op( B ) = B. |
---|
45 | * |
---|
46 | * TRANSB = 'T' or 't', op( B ) = B'. |
---|
47 | * |
---|
48 | * TRANSB = 'C' or 'c', op( B ) = B'. |
---|
49 | * |
---|
50 | * Unchanged on exit. |
---|
51 | * |
---|
52 | * M - INTEGER. |
---|
53 | * On entry, M specifies the number of rows of the matrix |
---|
54 | * op( A ) and of the matrix C. M must be at least zero. |
---|
55 | * Unchanged on exit. |
---|
56 | * |
---|
57 | * N - INTEGER. |
---|
58 | * On entry, N specifies the number of columns of the matrix |
---|
59 | * op( B ) and the number of columns of the matrix C. N must be |
---|
60 | * at least zero. |
---|
61 | * Unchanged on exit. |
---|
62 | * |
---|
63 | * K - INTEGER. |
---|
64 | * On entry, K specifies the number of columns of the matrix |
---|
65 | * op( A ) and the number of rows of the matrix op( B ). K must |
---|
66 | * be at least zero. |
---|
67 | * Unchanged on exit. |
---|
68 | * |
---|
69 | * ALPHA - DOUBLE PRECISION. |
---|
70 | * On entry, ALPHA specifies the scalar alpha. |
---|
71 | * Unchanged on exit. |
---|
72 | * |
---|
73 | * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is |
---|
74 | * k when TRANSA = 'N' or 'n', and is m otherwise. |
---|
75 | * Before entry with TRANSA = 'N' or 'n', the leading m by k |
---|
76 | * part of the array A must contain the matrix A, otherwise |
---|
77 | * the leading k by m part of the array A must contain the |
---|
78 | * matrix A. |
---|
79 | * Unchanged on exit. |
---|
80 | * |
---|
81 | * LDA - INTEGER. |
---|
82 | * On entry, LDA specifies the first dimension of A as declared |
---|
83 | * in the calling (sub) program. When TRANSA = 'N' or 'n' then |
---|
84 | * LDA must be at least max( 1, m ), otherwise LDA must be at |
---|
85 | * least max( 1, k ). |
---|
86 | * Unchanged on exit. |
---|
87 | * |
---|
88 | * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is |
---|
89 | * n when TRANSB = 'N' or 'n', and is k otherwise. |
---|
90 | * Before entry with TRANSB = 'N' or 'n', the leading k by n |
---|
91 | * part of the array B must contain the matrix B, otherwise |
---|
92 | * the leading n by k part of the array B must contain the |
---|
93 | * matrix B. |
---|
94 | * Unchanged on exit. |
---|
95 | * |
---|
96 | * LDB - INTEGER. |
---|
97 | * On entry, LDB specifies the first dimension of B as declared |
---|
98 | * in the calling (sub) program. When TRANSB = 'N' or 'n' then |
---|
99 | * LDB must be at least max( 1, k ), otherwise LDB must be at |
---|
100 | * least max( 1, n ). |
---|
101 | * Unchanged on exit. |
---|
102 | * |
---|
103 | * BETA - DOUBLE PRECISION. |
---|
104 | * On entry, BETA specifies the scalar beta. When BETA is |
---|
105 | * supplied as zero then C need not be set on input. |
---|
106 | * Unchanged on exit. |
---|
107 | * |
---|
108 | * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). |
---|
109 | * Before entry, the leading m by n part of the array C must |
---|
110 | * contain the matrix C, except when beta is zero, in which |
---|
111 | * case C need not be set on entry. |
---|
112 | * On exit, the array C is overwritten by the m by n matrix |
---|
113 | * ( alpha*op( A )*op( B ) + beta*C ). |
---|
114 | * |
---|
115 | * LDC - INTEGER. |
---|
116 | * On entry, LDC specifies the first dimension of C as declared |
---|
117 | * in the calling (sub) program. LDC must be at least |
---|
118 | * max( 1, m ). |
---|
119 | * Unchanged on exit. |
---|
120 | * |
---|
121 | * |
---|
122 | * Level 3 Blas routine. |
---|
123 | * |
---|
124 | * -- Written on 8-February-1989. |
---|
125 | * Jack Dongarra, Argonne National Laboratory. |
---|
126 | * Iain Duff, AERE Harwell. |
---|
127 | * Jeremy Du Croz, Numerical Algorithms Group Ltd. |
---|
128 | * Sven Hammarling, Numerical Algorithms Group Ltd. |
---|
129 | * |
---|
130 | * |
---|
131 | * .. External Functions .. |
---|
132 | LOGICAL LSAME |
---|
133 | EXTERNAL LSAME |
---|
134 | * .. |
---|
135 | * .. External Subroutines .. |
---|
136 | EXTERNAL XERBLA |
---|
137 | * .. |
---|
138 | * .. Intrinsic Functions .. |
---|
139 | INTRINSIC MAX |
---|
140 | * .. |
---|
141 | * .. Local Scalars .. |
---|
142 | DOUBLE PRECISION TEMP |
---|
143 | INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB |
---|
144 | LOGICAL NOTA,NOTB |
---|
145 | * .. |
---|
146 | * .. Parameters .. |
---|
147 | DOUBLE PRECISION ONE,ZERO |
---|
148 | PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) |
---|
149 | * .. |
---|
150 | * |
---|
151 | * Set NOTA and NOTB as true if A and B respectively are not |
---|
152 | * transposed and set NROWA, NCOLA and NROWB as the number of rows |
---|
153 | * and columns of A and the number of rows of B respectively. |
---|
154 | * |
---|
155 | NOTA = LSAME(TRANSA,'N') |
---|
156 | NOTB = LSAME(TRANSB,'N') |
---|
157 | IF (NOTA) THEN |
---|
158 | NROWA = M |
---|
159 | NCOLA = K |
---|
160 | ELSE |
---|
161 | NROWA = K |
---|
162 | NCOLA = M |
---|
163 | END IF |
---|
164 | IF (NOTB) THEN |
---|
165 | NROWB = K |
---|
166 | ELSE |
---|
167 | NROWB = N |
---|
168 | END IF |
---|
169 | * |
---|
170 | * Test the input parameters. |
---|
171 | * |
---|
172 | INFO = 0 |
---|
173 | IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND. |
---|
174 | + (.NOT.LSAME(TRANSA,'T'))) THEN |
---|
175 | INFO = 1 |
---|
176 | ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND. |
---|
177 | + (.NOT.LSAME(TRANSB,'T'))) THEN |
---|
178 | INFO = 2 |
---|
179 | ELSE IF (M.LT.0) THEN |
---|
180 | INFO = 3 |
---|
181 | ELSE IF (N.LT.0) THEN |
---|
182 | INFO = 4 |
---|
183 | ELSE IF (K.LT.0) THEN |
---|
184 | INFO = 5 |
---|
185 | ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
---|
186 | INFO = 8 |
---|
187 | ELSE IF (LDB.LT.MAX(1,NROWB)) THEN |
---|
188 | INFO = 10 |
---|
189 | ELSE IF (LDC.LT.MAX(1,M)) THEN |
---|
190 | INFO = 13 |
---|
191 | END IF |
---|
192 | IF (INFO.NE.0) THEN |
---|
193 | CALL XERBLA('DGEMM ',INFO) |
---|
194 | RETURN |
---|
195 | END IF |
---|
196 | * |
---|
197 | * Quick return if possible. |
---|
198 | * |
---|
199 | IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
---|
200 | + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
---|
201 | * |
---|
202 | * And if alpha.eq.zero. |
---|
203 | * |
---|
204 | IF (ALPHA.EQ.ZERO) THEN |
---|
205 | IF (BETA.EQ.ZERO) THEN |
---|
206 | DO 20 J = 1,N |
---|
207 | DO 10 I = 1,M |
---|
208 | C(I,J) = ZERO |
---|
209 | 10 CONTINUE |
---|
210 | 20 CONTINUE |
---|
211 | ELSE |
---|
212 | DO 40 J = 1,N |
---|
213 | DO 30 I = 1,M |
---|
214 | C(I,J) = BETA*C(I,J) |
---|
215 | 30 CONTINUE |
---|
216 | 40 CONTINUE |
---|
217 | END IF |
---|
218 | RETURN |
---|
219 | END IF |
---|
220 | * |
---|
221 | * Start the operations. |
---|
222 | * |
---|
223 | IF (NOTB) THEN |
---|
224 | IF (NOTA) THEN |
---|
225 | * |
---|
226 | * Form C := alpha*A*B + beta*C. |
---|
227 | * |
---|
228 | DO 90 J = 1,N |
---|
229 | IF (BETA.EQ.ZERO) THEN |
---|
230 | DO 50 I = 1,M |
---|
231 | C(I,J) = ZERO |
---|
232 | 50 CONTINUE |
---|
233 | ELSE IF (BETA.NE.ONE) THEN |
---|
234 | DO 60 I = 1,M |
---|
235 | C(I,J) = BETA*C(I,J) |
---|
236 | 60 CONTINUE |
---|
237 | END IF |
---|
238 | DO 80 L = 1,K |
---|
239 | IF (B(L,J).NE.ZERO) THEN |
---|
240 | TEMP = ALPHA*B(L,J) |
---|
241 | DO 70 I = 1,M |
---|
242 | C(I,J) = C(I,J) + TEMP*A(I,L) |
---|
243 | 70 CONTINUE |
---|
244 | END IF |
---|
245 | 80 CONTINUE |
---|
246 | 90 CONTINUE |
---|
247 | ELSE |
---|
248 | * |
---|
249 | * Form C := alpha*A'*B + beta*C |
---|
250 | * |
---|
251 | DO 120 J = 1,N |
---|
252 | DO 110 I = 1,M |
---|
253 | TEMP = ZERO |
---|
254 | DO 100 L = 1,K |
---|
255 | TEMP = TEMP + A(L,I)*B(L,J) |
---|
256 | 100 CONTINUE |
---|
257 | IF (BETA.EQ.ZERO) THEN |
---|
258 | C(I,J) = ALPHA*TEMP |
---|
259 | ELSE |
---|
260 | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
---|
261 | END IF |
---|
262 | 110 CONTINUE |
---|
263 | 120 CONTINUE |
---|
264 | END IF |
---|
265 | ELSE |
---|
266 | IF (NOTA) THEN |
---|
267 | * |
---|
268 | * Form C := alpha*A*B' + beta*C |
---|
269 | * |
---|
270 | DO 170 J = 1,N |
---|
271 | IF (BETA.EQ.ZERO) THEN |
---|
272 | DO 130 I = 1,M |
---|
273 | C(I,J) = ZERO |
---|
274 | 130 CONTINUE |
---|
275 | ELSE IF (BETA.NE.ONE) THEN |
---|
276 | DO 140 I = 1,M |
---|
277 | C(I,J) = BETA*C(I,J) |
---|
278 | 140 CONTINUE |
---|
279 | END IF |
---|
280 | DO 160 L = 1,K |
---|
281 | IF (B(J,L).NE.ZERO) THEN |
---|
282 | TEMP = ALPHA*B(J,L) |
---|
283 | DO 150 I = 1,M |
---|
284 | C(I,J) = C(I,J) + TEMP*A(I,L) |
---|
285 | 150 CONTINUE |
---|
286 | END IF |
---|
287 | 160 CONTINUE |
---|
288 | 170 CONTINUE |
---|
289 | ELSE |
---|
290 | * |
---|
291 | * Form C := alpha*A'*B' + beta*C |
---|
292 | * |
---|
293 | DO 200 J = 1,N |
---|
294 | DO 190 I = 1,M |
---|
295 | TEMP = ZERO |
---|
296 | DO 180 L = 1,K |
---|
297 | TEMP = TEMP + A(L,I)*B(J,L) |
---|
298 | 180 CONTINUE |
---|
299 | IF (BETA.EQ.ZERO) THEN |
---|
300 | C(I,J) = ALPHA*TEMP |
---|
301 | ELSE |
---|
302 | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
---|
303 | END IF |
---|
304 | 190 CONTINUE |
---|
305 | 200 CONTINUE |
---|
306 | END IF |
---|
307 | END IF |
---|
308 | * |
---|
309 | RETURN |
---|
310 | * |
---|
311 | * End of DGEMM . |
---|
312 | * |
---|
313 | END |
---|