1 | SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP) |
---|
2 | * .. Scalar Arguments .. |
---|
3 | REAL ALPHA |
---|
4 | INTEGER INCX,N |
---|
5 | CHARACTER UPLO |
---|
6 | * .. |
---|
7 | * .. Array Arguments .. |
---|
8 | COMPLEX AP(*),X(*) |
---|
9 | * .. |
---|
10 | * |
---|
11 | * Purpose |
---|
12 | * ======= |
---|
13 | * |
---|
14 | * CHPR performs the hermitian rank 1 operation |
---|
15 | * |
---|
16 | * A := alpha*x*conjg( x' ) + A, |
---|
17 | * |
---|
18 | * where alpha is a real scalar, x is an n element vector and A is an |
---|
19 | * n by n hermitian matrix, supplied in packed form. |
---|
20 | * |
---|
21 | * Arguments |
---|
22 | * ========== |
---|
23 | * |
---|
24 | * UPLO - CHARACTER*1. |
---|
25 | * On entry, UPLO specifies whether the upper or lower |
---|
26 | * triangular part of the matrix A is supplied in the packed |
---|
27 | * array AP as follows: |
---|
28 | * |
---|
29 | * UPLO = 'U' or 'u' The upper triangular part of A is |
---|
30 | * supplied in AP. |
---|
31 | * |
---|
32 | * UPLO = 'L' or 'l' The lower triangular part of A is |
---|
33 | * supplied in AP. |
---|
34 | * |
---|
35 | * Unchanged on exit. |
---|
36 | * |
---|
37 | * N - INTEGER. |
---|
38 | * On entry, N specifies the order of the matrix A. |
---|
39 | * N must be at least zero. |
---|
40 | * Unchanged on exit. |
---|
41 | * |
---|
42 | * ALPHA - REAL . |
---|
43 | * On entry, ALPHA specifies the scalar alpha. |
---|
44 | * Unchanged on exit. |
---|
45 | * |
---|
46 | * X - COMPLEX array of dimension at least |
---|
47 | * ( 1 + ( n - 1 )*abs( INCX ) ). |
---|
48 | * Before entry, the incremented array X must contain the n |
---|
49 | * element vector x. |
---|
50 | * Unchanged on exit. |
---|
51 | * |
---|
52 | * INCX - INTEGER. |
---|
53 | * On entry, INCX specifies the increment for the elements of |
---|
54 | * X. INCX must not be zero. |
---|
55 | * Unchanged on exit. |
---|
56 | * |
---|
57 | * AP - COMPLEX array of DIMENSION at least |
---|
58 | * ( ( n*( n + 1 ) )/2 ). |
---|
59 | * Before entry with UPLO = 'U' or 'u', the array AP must |
---|
60 | * contain the upper triangular part of the hermitian matrix |
---|
61 | * packed sequentially, column by column, so that AP( 1 ) |
---|
62 | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
---|
63 | * and a( 2, 2 ) respectively, and so on. On exit, the array |
---|
64 | * AP is overwritten by the upper triangular part of the |
---|
65 | * updated matrix. |
---|
66 | * Before entry with UPLO = 'L' or 'l', the array AP must |
---|
67 | * contain the lower triangular part of the hermitian matrix |
---|
68 | * packed sequentially, column by column, so that AP( 1 ) |
---|
69 | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
---|
70 | * and a( 3, 1 ) respectively, and so on. On exit, the array |
---|
71 | * AP is overwritten by the lower triangular part of the |
---|
72 | * updated matrix. |
---|
73 | * Note that the imaginary parts of the diagonal elements need |
---|
74 | * not be set, they are assumed to be zero, and on exit they |
---|
75 | * are set to zero. |
---|
76 | * |
---|
77 | * |
---|
78 | * Level 2 Blas routine. |
---|
79 | * |
---|
80 | * -- Written on 22-October-1986. |
---|
81 | * Jack Dongarra, Argonne National Lab. |
---|
82 | * Jeremy Du Croz, Nag Central Office. |
---|
83 | * Sven Hammarling, Nag Central Office. |
---|
84 | * Richard Hanson, Sandia National Labs. |
---|
85 | * |
---|
86 | * |
---|
87 | * .. Parameters .. |
---|
88 | COMPLEX ZERO |
---|
89 | PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
---|
90 | * .. |
---|
91 | * .. Local Scalars .. |
---|
92 | COMPLEX TEMP |
---|
93 | INTEGER I,INFO,IX,J,JX,K,KK,KX |
---|
94 | * .. |
---|
95 | * .. External Functions .. |
---|
96 | LOGICAL LSAME |
---|
97 | EXTERNAL LSAME |
---|
98 | * .. |
---|
99 | * .. External Subroutines .. |
---|
100 | EXTERNAL XERBLA |
---|
101 | * .. |
---|
102 | * .. Intrinsic Functions .. |
---|
103 | INTRINSIC CONJG,REAL |
---|
104 | * .. |
---|
105 | * |
---|
106 | * Test the input parameters. |
---|
107 | * |
---|
108 | INFO = 0 |
---|
109 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
---|
110 | INFO = 1 |
---|
111 | ELSE IF (N.LT.0) THEN |
---|
112 | INFO = 2 |
---|
113 | ELSE IF (INCX.EQ.0) THEN |
---|
114 | INFO = 5 |
---|
115 | END IF |
---|
116 | IF (INFO.NE.0) THEN |
---|
117 | CALL XERBLA('CHPR ',INFO) |
---|
118 | RETURN |
---|
119 | END IF |
---|
120 | * |
---|
121 | * Quick return if possible. |
---|
122 | * |
---|
123 | IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN |
---|
124 | * |
---|
125 | * Set the start point in X if the increment is not unity. |
---|
126 | * |
---|
127 | IF (INCX.LE.0) THEN |
---|
128 | KX = 1 - (N-1)*INCX |
---|
129 | ELSE IF (INCX.NE.1) THEN |
---|
130 | KX = 1 |
---|
131 | END IF |
---|
132 | * |
---|
133 | * Start the operations. In this version the elements of the array AP |
---|
134 | * are accessed sequentially with one pass through AP. |
---|
135 | * |
---|
136 | KK = 1 |
---|
137 | IF (LSAME(UPLO,'U')) THEN |
---|
138 | * |
---|
139 | * Form A when upper triangle is stored in AP. |
---|
140 | * |
---|
141 | IF (INCX.EQ.1) THEN |
---|
142 | DO 20 J = 1,N |
---|
143 | IF (X(J).NE.ZERO) THEN |
---|
144 | TEMP = ALPHA*CONJG(X(J)) |
---|
145 | K = KK |
---|
146 | DO 10 I = 1,J - 1 |
---|
147 | AP(K) = AP(K) + X(I)*TEMP |
---|
148 | K = K + 1 |
---|
149 | 10 CONTINUE |
---|
150 | AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP) |
---|
151 | ELSE |
---|
152 | AP(KK+J-1) = REAL(AP(KK+J-1)) |
---|
153 | END IF |
---|
154 | KK = KK + J |
---|
155 | 20 CONTINUE |
---|
156 | ELSE |
---|
157 | JX = KX |
---|
158 | DO 40 J = 1,N |
---|
159 | IF (X(JX).NE.ZERO) THEN |
---|
160 | TEMP = ALPHA*CONJG(X(JX)) |
---|
161 | IX = KX |
---|
162 | DO 30 K = KK,KK + J - 2 |
---|
163 | AP(K) = AP(K) + X(IX)*TEMP |
---|
164 | IX = IX + INCX |
---|
165 | 30 CONTINUE |
---|
166 | AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP) |
---|
167 | ELSE |
---|
168 | AP(KK+J-1) = REAL(AP(KK+J-1)) |
---|
169 | END IF |
---|
170 | JX = JX + INCX |
---|
171 | KK = KK + J |
---|
172 | 40 CONTINUE |
---|
173 | END IF |
---|
174 | ELSE |
---|
175 | * |
---|
176 | * Form A when lower triangle is stored in AP. |
---|
177 | * |
---|
178 | IF (INCX.EQ.1) THEN |
---|
179 | DO 60 J = 1,N |
---|
180 | IF (X(J).NE.ZERO) THEN |
---|
181 | TEMP = ALPHA*CONJG(X(J)) |
---|
182 | AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J)) |
---|
183 | K = KK + 1 |
---|
184 | DO 50 I = J + 1,N |
---|
185 | AP(K) = AP(K) + X(I)*TEMP |
---|
186 | K = K + 1 |
---|
187 | 50 CONTINUE |
---|
188 | ELSE |
---|
189 | AP(KK) = REAL(AP(KK)) |
---|
190 | END IF |
---|
191 | KK = KK + N - J + 1 |
---|
192 | 60 CONTINUE |
---|
193 | ELSE |
---|
194 | JX = KX |
---|
195 | DO 80 J = 1,N |
---|
196 | IF (X(JX).NE.ZERO) THEN |
---|
197 | TEMP = ALPHA*CONJG(X(JX)) |
---|
198 | AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX)) |
---|
199 | IX = JX |
---|
200 | DO 70 K = KK + 1,KK + N - J |
---|
201 | IX = IX + INCX |
---|
202 | AP(K) = AP(K) + X(IX)*TEMP |
---|
203 | 70 CONTINUE |
---|
204 | ELSE |
---|
205 | AP(KK) = REAL(AP(KK)) |
---|
206 | END IF |
---|
207 | JX = JX + INCX |
---|
208 | KK = KK + N - J + 1 |
---|
209 | 80 CONTINUE |
---|
210 | END IF |
---|
211 | END IF |
---|
212 | * |
---|
213 | RETURN |
---|
214 | * |
---|
215 | * End of CHPR . |
---|
216 | * |
---|
217 | END |
---|