Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2789_MathNetNumerics-Exploration/HeuristicLab.Algorithms.DataAnalysis.Experimental/sbart/cher2.f @ 16752

Last change on this file since 16752 was 15457, checked in by gkronber, 7 years ago

#2789 added Finbarr O'Sullivan smoothing spline code

File size: 7.9 KB
Line 
1      SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
2*     .. Scalar Arguments ..
3      COMPLEX ALPHA
4      INTEGER INCX,INCY,LDA,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      COMPLEX A(LDA,*),X(*),Y(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  CHER2  performs the hermitian rank 2 operation
15*
16*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
17*
18*  where alpha is a scalar, x and y are n element vectors and A is an n
19*  by n hermitian matrix.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the array A is to be referenced as
27*           follows:
28*
29*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30*                                  is to be referenced.
31*
32*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33*                                  is to be referenced.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  ALPHA  - COMPLEX         .
43*           On entry, ALPHA specifies the scalar alpha.
44*           Unchanged on exit.
45*
46*  X      - COMPLEX          array of dimension at least
47*           ( 1 + ( n - 1 )*abs( INCX ) ).
48*           Before entry, the incremented array X must contain the n
49*           element vector x.
50*           Unchanged on exit.
51*
52*  INCX   - INTEGER.
53*           On entry, INCX specifies the increment for the elements of
54*           X. INCX must not be zero.
55*           Unchanged on exit.
56*
57*  Y      - COMPLEX          array of dimension at least
58*           ( 1 + ( n - 1 )*abs( INCY ) ).
59*           Before entry, the incremented array Y must contain the n
60*           element vector y.
61*           Unchanged on exit.
62*
63*  INCY   - INTEGER.
64*           On entry, INCY specifies the increment for the elements of
65*           Y. INCY must not be zero.
66*           Unchanged on exit.
67*
68*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
69*           Before entry with  UPLO = 'U' or 'u', the leading n by n
70*           upper triangular part of the array A must contain the upper
71*           triangular part of the hermitian matrix and the strictly
72*           lower triangular part of A is not referenced. On exit, the
73*           upper triangular part of the array A is overwritten by the
74*           upper triangular part of the updated matrix.
75*           Before entry with UPLO = 'L' or 'l', the leading n by n
76*           lower triangular part of the array A must contain the lower
77*           triangular part of the hermitian matrix and the strictly
78*           upper triangular part of A is not referenced. On exit, the
79*           lower triangular part of the array A is overwritten by the
80*           lower triangular part of the updated matrix.
81*           Note that the imaginary parts of the diagonal elements need
82*           not be set, they are assumed to be zero, and on exit they
83*           are set to zero.
84*
85*  LDA    - INTEGER.
86*           On entry, LDA specifies the first dimension of A as declared
87*           in the calling (sub) program. LDA must be at least
88*           max( 1, n ).
89*           Unchanged on exit.
90*
91*
92*  Level 2 Blas routine.
93*
94*  -- Written on 22-October-1986.
95*     Jack Dongarra, Argonne National Lab.
96*     Jeremy Du Croz, Nag Central Office.
97*     Sven Hammarling, Nag Central Office.
98*     Richard Hanson, Sandia National Labs.
99*
100*
101*     .. Parameters ..
102      COMPLEX ZERO
103      PARAMETER (ZERO= (0.0E+0,0.0E+0))
104*     ..
105*     .. Local Scalars ..
106      COMPLEX TEMP1,TEMP2
107      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
108*     ..
109*     .. External Functions ..
110      LOGICAL LSAME
111      EXTERNAL LSAME
112*     ..
113*     .. External Subroutines ..
114      EXTERNAL XERBLA
115*     ..
116*     .. Intrinsic Functions ..
117      INTRINSIC CONJG,MAX,REAL
118*     ..
119*
120*     Test the input parameters.
121*
122      INFO = 0
123      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
124          INFO = 1
125      ELSE IF (N.LT.0) THEN
126          INFO = 2
127      ELSE IF (INCX.EQ.0) THEN
128          INFO = 5
129      ELSE IF (INCY.EQ.0) THEN
130          INFO = 7
131      ELSE IF (LDA.LT.MAX(1,N)) THEN
132          INFO = 9
133      END IF
134      IF (INFO.NE.0) THEN
135          CALL XERBLA('CHER2 ',INFO)
136          RETURN
137      END IF
138*
139*     Quick return if possible.
140*
141      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
142*
143*     Set up the start points in X and Y if the increments are not both
144*     unity.
145*
146      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
147          IF (INCX.GT.0) THEN
148              KX = 1
149          ELSE
150              KX = 1 - (N-1)*INCX
151          END IF
152          IF (INCY.GT.0) THEN
153              KY = 1
154          ELSE
155              KY = 1 - (N-1)*INCY
156          END IF
157          JX = KX
158          JY = KY
159      END IF
160*
161*     Start the operations. In this version the elements of A are
162*     accessed sequentially with one pass through the triangular part
163*     of A.
164*
165      IF (LSAME(UPLO,'U')) THEN
166*
167*        Form  A  when A is stored in the upper triangle.
168*
169          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
170              DO 20 J = 1,N
171                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
172                      TEMP1 = ALPHA*CONJG(Y(J))
173                      TEMP2 = CONJG(ALPHA*X(J))
174                      DO 10 I = 1,J - 1
175                          A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
176   10                 CONTINUE
177                      A(J,J) = REAL(A(J,J)) +
178     +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
179                  ELSE
180                      A(J,J) = REAL(A(J,J))
181                  END IF
182   20         CONTINUE
183          ELSE
184              DO 40 J = 1,N
185                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
186                      TEMP1 = ALPHA*CONJG(Y(JY))
187                      TEMP2 = CONJG(ALPHA*X(JX))
188                      IX = KX
189                      IY = KY
190                      DO 30 I = 1,J - 1
191                          A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
192                          IX = IX + INCX
193                          IY = IY + INCY
194   30                 CONTINUE
195                      A(J,J) = REAL(A(J,J)) +
196     +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
197                  ELSE
198                      A(J,J) = REAL(A(J,J))
199                  END IF
200                  JX = JX + INCX
201                  JY = JY + INCY
202   40         CONTINUE
203          END IF
204      ELSE
205*
206*        Form  A  when A is stored in the lower triangle.
207*
208          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
209              DO 60 J = 1,N
210                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
211                      TEMP1 = ALPHA*CONJG(Y(J))
212                      TEMP2 = CONJG(ALPHA*X(J))
213                      A(J,J) = REAL(A(J,J)) +
214     +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
215                      DO 50 I = J + 1,N
216                          A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
217   50                 CONTINUE
218                  ELSE
219                      A(J,J) = REAL(A(J,J))
220                  END IF
221   60         CONTINUE
222          ELSE
223              DO 80 J = 1,N
224                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
225                      TEMP1 = ALPHA*CONJG(Y(JY))
226                      TEMP2 = CONJG(ALPHA*X(JX))
227                      A(J,J) = REAL(A(J,J)) +
228     +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
229                      IX = JX
230                      IY = JY
231                      DO 70 I = J + 1,N
232                          IX = IX + INCX
233                          IY = IY + INCY
234                          A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
235   70                 CONTINUE
236                  ELSE
237                      A(J,J) = REAL(A(J,J))
238                  END IF
239                  JX = JX + INCX
240                  JY = JY + INCY
241   80         CONTINUE
242          END IF
243      END IF
244*
245      RETURN
246*
247*     End of CHER2 .
248*
249      END
Note: See TracBrowser for help on using the repository browser.