1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Runtime.Serialization;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
28 | using DiffSharp.Interop.Float64;
|
---|
29 | using System.Linq.Expressions;
|
---|
30 | using System.Reflection;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
33 | public class TreeToDiffSharpConverter {
|
---|
34 | public delegate double ParametricFunction(double[] vars);
|
---|
35 |
|
---|
36 | public delegate Tuple<double[], double> ParametricFunctionGradient(double[] vars);
|
---|
37 |
|
---|
38 | #region helper class
|
---|
39 | public class DataForVariable {
|
---|
40 | public readonly string variableName;
|
---|
41 | public readonly string variableValue; // for factor vars
|
---|
42 | public readonly int lag;
|
---|
43 |
|
---|
44 | public DataForVariable(string varName, string varValue, int lag) {
|
---|
45 | this.variableName = varName;
|
---|
46 | this.variableValue = varValue;
|
---|
47 | this.lag = lag;
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override bool Equals(object obj) {
|
---|
51 | var other = obj as DataForVariable;
|
---|
52 | if (other == null) return false;
|
---|
53 | return other.variableName.Equals(this.variableName) &&
|
---|
54 | other.variableValue.Equals(this.variableValue) &&
|
---|
55 | other.lag == this.lag;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override int GetHashCode() {
|
---|
59 | return variableName.GetHashCode() ^ variableValue.GetHashCode() ^ lag;
|
---|
60 | }
|
---|
61 | }
|
---|
62 | #endregion
|
---|
63 |
|
---|
64 |
|
---|
65 | public static bool TryConvertToDiffSharp(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable,
|
---|
66 | out List<DataForVariable> parameters, out double[] initialConstants,
|
---|
67 | out Func<DV, D> func) {
|
---|
68 |
|
---|
69 | // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
|
---|
70 | var transformator = new TreeToDiffSharpConverter(makeVariableWeightsVariable);
|
---|
71 | try {
|
---|
72 |
|
---|
73 | // the list of variable names represents the names for dv[0] ... dv[d-1] where d is the number of input variables
|
---|
74 | // the remaining entries of d represent the parameter values
|
---|
75 | transformator.ExtractParameters(tree.Root.GetSubtree(0));
|
---|
76 |
|
---|
77 | var lambda = transformator.CreateDelegate(tree, transformator.parameters);
|
---|
78 | func = lambda.Compile();
|
---|
79 |
|
---|
80 | var parameterEntries = transformator.parameters.ToArray(); // guarantee same order for keys and values
|
---|
81 | parameters = new List<DataForVariable>(parameterEntries.Select(kvp => kvp.Key));
|
---|
82 | initialConstants = transformator.initialConstants.ToArray();
|
---|
83 | return true;
|
---|
84 | } catch (ConversionException) {
|
---|
85 | func = null;
|
---|
86 | parameters = null;
|
---|
87 | initialConstants = null;
|
---|
88 | }
|
---|
89 | return false;
|
---|
90 | }
|
---|
91 |
|
---|
92 | public Expression<Func<DV, D>> CreateDelegate(ISymbolicExpressionTree tree, Dictionary<DataForVariable, int> parameters) {
|
---|
93 | paramIdx = parameters.Count; // first non-variable parameter
|
---|
94 | var dv = Expression.Parameter(typeof(DV));
|
---|
95 | var expr = MakeExpr(tree.Root.GetSubtree(0), parameters, dv);
|
---|
96 | var lambda = Expression.Lambda<Func<DV, D>>(expr, dv);
|
---|
97 | return lambda;
|
---|
98 | }
|
---|
99 |
|
---|
100 | // state for recursive transformation of trees
|
---|
101 | private readonly List<double> initialConstants;
|
---|
102 | private readonly Dictionary<DataForVariable, int> parameters;
|
---|
103 | private readonly bool makeVariableWeightsVariable;
|
---|
104 | private int paramIdx;
|
---|
105 |
|
---|
106 | private TreeToDiffSharpConverter(bool makeVariableWeightsVariable) {
|
---|
107 | this.makeVariableWeightsVariable = makeVariableWeightsVariable;
|
---|
108 | this.initialConstants = new List<double>();
|
---|
109 | this.parameters = new Dictionary<DataForVariable, int>();
|
---|
110 | }
|
---|
111 |
|
---|
112 | private void ExtractParameters(ISymbolicExpressionTreeNode node) {
|
---|
113 | if (node.Symbol is HeuristicLab.Problems.DataAnalysis.Symbolic.Constant) {
|
---|
114 | initialConstants.Add(((ConstantTreeNode)node).Value);
|
---|
115 | } else if (node.Symbol is HeuristicLab.Problems.DataAnalysis.Symbolic.Variable || node.Symbol is BinaryFactorVariable) {
|
---|
116 | var varNode = node as VariableTreeNodeBase;
|
---|
117 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
118 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
119 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
120 | FindOrCreateParameter(parameters, varNode.VariableName, varValue);
|
---|
121 |
|
---|
122 | if (makeVariableWeightsVariable) {
|
---|
123 | initialConstants.Add(varNode.Weight);
|
---|
124 | }
|
---|
125 | } else if (node.Symbol is FactorVariable) {
|
---|
126 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
127 | var products = new List<D>();
|
---|
128 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) {
|
---|
129 | FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue);
|
---|
130 |
|
---|
131 | initialConstants.Add(factorVarNode.GetValue(variableValue));
|
---|
132 | }
|
---|
133 | } else if (node.Symbol is LaggedVariable) {
|
---|
134 | var varNode = node as LaggedVariableTreeNode;
|
---|
135 | FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag);
|
---|
136 |
|
---|
137 | if (makeVariableWeightsVariable) {
|
---|
138 | initialConstants.Add(varNode.Weight);
|
---|
139 | }
|
---|
140 | } else if (node.Symbol is Addition) {
|
---|
141 | foreach (var subTree in node.Subtrees) {
|
---|
142 | ExtractParameters(subTree);
|
---|
143 | }
|
---|
144 | } else if (node.Symbol is Subtraction) {
|
---|
145 | for (int i = 0; i < node.SubtreeCount; i++) {
|
---|
146 | ExtractParameters(node.GetSubtree(i));
|
---|
147 | }
|
---|
148 | } else if (node.Symbol is Multiplication) {
|
---|
149 | foreach (var subTree in node.Subtrees) {
|
---|
150 | ExtractParameters(subTree);
|
---|
151 | }
|
---|
152 | } else if (node.Symbol is Division) {
|
---|
153 | foreach (var subTree in node.Subtrees) {
|
---|
154 | ExtractParameters(subTree);
|
---|
155 | }
|
---|
156 | } else if (node.Symbol is Logarithm) {
|
---|
157 | ExtractParameters(node.GetSubtree(0));
|
---|
158 | } else if (node.Symbol is Exponential) {
|
---|
159 | ExtractParameters(node.GetSubtree(0));
|
---|
160 | } else if (node.Symbol is Square) {
|
---|
161 | ExtractParameters(node.GetSubtree(0));
|
---|
162 | } else if (node.Symbol is SquareRoot) {
|
---|
163 | ExtractParameters(node.GetSubtree(0));
|
---|
164 | } else if (node.Symbol is Sine) {
|
---|
165 | ExtractParameters(node.GetSubtree(0));
|
---|
166 | } else if (node.Symbol is Cosine) {
|
---|
167 | ExtractParameters(node.GetSubtree(0));
|
---|
168 | } else if (node.Symbol is Tangent) {
|
---|
169 | ExtractParameters(node.GetSubtree(0));
|
---|
170 | } else if (node.Symbol is StartSymbol) {
|
---|
171 | ExtractParameters(node.GetSubtree(0));
|
---|
172 | } else throw new ConversionException();
|
---|
173 | }
|
---|
174 |
|
---|
175 | private Func<DV, D> CreateDiffSharpFunc(ISymbolicExpressionTreeNode node, Dictionary<DataForVariable, int> parameters) {
|
---|
176 | this.paramIdx = parameters.Count; // first idx of non-variable parameter
|
---|
177 | var f = CreateDiffSharpFunc(node, parameters);
|
---|
178 | return (DV paramValues) => f(paramValues);
|
---|
179 | }
|
---|
180 |
|
---|
181 | private static readonly MethodInfo DvIndexer = typeof(DV).GetMethod("get_Item", new[] { typeof(int) });
|
---|
182 | private static readonly MethodInfo d_Add_d = typeof(D).GetMethod("op_Addition", new[] { typeof(D), typeof(D) });
|
---|
183 | private static readonly MethodInfo d_Neg = typeof(D).GetMethod("Neg", new[] { typeof(D) });
|
---|
184 | private static readonly MethodInfo d_Mul_d = typeof(D).GetMethod("op_Multiply", new[] { typeof(D), typeof(D) });
|
---|
185 | private static readonly MethodInfo d_Mul_f = typeof(D).GetMethod("op_Multiply", new[] { typeof(D), typeof(double) });
|
---|
186 | private static readonly MethodInfo d_Div_d = typeof(D).GetMethod("op_Division", new[] { typeof(D), typeof(D) });
|
---|
187 | private static readonly MethodInfo f_Div_d = typeof(D).GetMethod("op_Division", new[] { typeof(double), typeof(D) });
|
---|
188 | private static readonly MethodInfo d_Sub_d = typeof(D).GetMethod("op_Subtraction", new[] { typeof(D), typeof(D) });
|
---|
189 | private static readonly MethodInfo d_Pow_f = typeof(D).GetMethod("Pow", new[] { typeof(D), typeof(double) });
|
---|
190 | private static readonly MethodInfo d_Log = typeof(D).GetMethod("Log", new[] { typeof(D) });
|
---|
191 | private static readonly MethodInfo d_Exp = typeof(D).GetMethod("Exp", new[] { typeof(D) });
|
---|
192 |
|
---|
193 |
|
---|
194 |
|
---|
195 | private Expression MakeExpr(ISymbolicExpressionTreeNode node, Dictionary<DataForVariable, int> parameters, ParameterExpression dv) {
|
---|
196 | if (node.Symbol is HeuristicLab.Problems.DataAnalysis.Symbolic.Constant) {
|
---|
197 | return Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
|
---|
198 | }
|
---|
199 | if (node.Symbol is HeuristicLab.Problems.DataAnalysis.Symbolic.Variable || node.Symbol is BinaryFactorVariable) {
|
---|
200 | var varNode = node as VariableTreeNodeBase;
|
---|
201 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
202 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
203 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
204 | var par = FindOrCreateParameter(parameters, varNode.VariableName, varValue);
|
---|
205 |
|
---|
206 | if (makeVariableWeightsVariable) {
|
---|
207 | var w = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
|
---|
208 | var v = Expression.Call(dv, DvIndexer, Expression.Constant(par));
|
---|
209 | return Expression.Call(d_Mul_d, w, v);
|
---|
210 | } else {
|
---|
211 | var w = Expression.Constant(varNode.Weight);
|
---|
212 | var v = Expression.Call(dv, DvIndexer, Expression.Constant(par));
|
---|
213 | return Expression.Call(d_Mul_f, v, w);
|
---|
214 | }
|
---|
215 | }
|
---|
216 | if (node.Symbol is FactorVariable) {
|
---|
217 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
218 | var products = new List<D>();
|
---|
219 | var firstValue = factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName).First();
|
---|
220 | var parForFirstValue = FindOrCreateParameter(parameters, factorVarNode.VariableName, firstValue);
|
---|
221 | var weightForFirstValue = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
|
---|
222 | var valForFirstValue = Expression.Call(dv, DvIndexer, Expression.Constant(parForFirstValue));
|
---|
223 | var res = Expression.Call(d_Mul_d, weightForFirstValue, valForFirstValue);
|
---|
224 |
|
---|
225 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName).Skip(1)) {
|
---|
226 | var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue);
|
---|
227 |
|
---|
228 | var weight = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
|
---|
229 | var v = Expression.Call(dv, DvIndexer, Expression.Constant(par));
|
---|
230 |
|
---|
231 | res = Expression.Call(d_Add_d, res, Expression.Call(d_Mul_d, weight, v));
|
---|
232 | }
|
---|
233 | return res;
|
---|
234 | }
|
---|
235 | // if (node.Symbol is LaggedVariable) {
|
---|
236 | // var varNode = node as LaggedVariableTreeNode;
|
---|
237 | // var par = FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag);
|
---|
238 | //
|
---|
239 | // if (makeVariableWeightsVariable) {
|
---|
240 | // initialConstants.Add(varNode.Weight);
|
---|
241 | // var w = paramValues[paramIdx++];
|
---|
242 | // return w * paramValues[par];
|
---|
243 | // } else {
|
---|
244 | // return varNode.Weight * paramValues[par];
|
---|
245 | // }
|
---|
246 | // }
|
---|
247 | if (node.Symbol is Addition) {
|
---|
248 | var f = MakeExpr(node.Subtrees.First(), parameters, dv);
|
---|
249 |
|
---|
250 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
251 | f = Expression.Call(d_Add_d, f, MakeExpr(subTree, parameters, dv));
|
---|
252 | }
|
---|
253 | return f;
|
---|
254 | }
|
---|
255 | if (node.Symbol is Subtraction) {
|
---|
256 | if (node.SubtreeCount == 1) {
|
---|
257 | return Expression.Call(d_Neg, MakeExpr(node.Subtrees.First(), parameters, dv));
|
---|
258 | } else {
|
---|
259 | var f = MakeExpr(node.Subtrees.First(), parameters, dv);
|
---|
260 |
|
---|
261 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
262 | f = Expression.Call(d_Sub_d, f, MakeExpr(subTree, parameters, dv));
|
---|
263 | }
|
---|
264 | return f;
|
---|
265 | }
|
---|
266 | }
|
---|
267 | if (node.Symbol is Multiplication) {
|
---|
268 | var f = MakeExpr(node.Subtrees.First(), parameters, dv);
|
---|
269 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
270 | f = Expression.Call(d_Mul_d, f, MakeExpr(subTree, parameters, dv));
|
---|
271 | }
|
---|
272 | return f;
|
---|
273 | }
|
---|
274 | if (node.Symbol is Division) {
|
---|
275 | if (node.SubtreeCount == 1) {
|
---|
276 | return Expression.Call(f_Div_d, Expression.Constant(1.0), MakeExpr(node.Subtrees.First(), parameters, dv));
|
---|
277 | } else {
|
---|
278 | var f = MakeExpr(node.Subtrees.First(), parameters, dv);
|
---|
279 |
|
---|
280 | foreach (var subTree in node.Subtrees.Skip(1)) {
|
---|
281 | f = Expression.Call(d_Div_d, f, MakeExpr(subTree, parameters, dv));
|
---|
282 | }
|
---|
283 | return f;
|
---|
284 | }
|
---|
285 | }
|
---|
286 | if (node.Symbol is Logarithm) {
|
---|
287 | return Expression.Call(d_Log, MakeExpr(node.GetSubtree(0), parameters, dv));
|
---|
288 | }
|
---|
289 | if (node.Symbol is Exponential) {
|
---|
290 | return Expression.Call(d_Exp, MakeExpr(node.GetSubtree(0), parameters, dv));
|
---|
291 | }
|
---|
292 | if (node.Symbol is Square) {
|
---|
293 | return Expression.Call(d_Pow_f, MakeExpr(node.GetSubtree(0), parameters, dv), Expression.Constant(2.0));
|
---|
294 | }
|
---|
295 | if (node.Symbol is SquareRoot) {
|
---|
296 | return Expression.Call(d_Pow_f, MakeExpr(node.GetSubtree(0), parameters, dv), Expression.Constant(0.5));
|
---|
297 | }
|
---|
298 | // if (node.Symbol is Sine) {
|
---|
299 | // return AD.Sin(CreateDiffSharpFunc(node.GetSubtree(0), parameters, paramValues));
|
---|
300 | // }
|
---|
301 | // if (node.Symbol is Cosine) {
|
---|
302 | // return AD.Cos(CreateDiffSharpFunc(node.GetSubtree(0), parameters, paramValues));
|
---|
303 | // }
|
---|
304 | // if (node.Symbol is Tangent) {
|
---|
305 | // return AD.Tan(CreateDiffSharpFunc(node.GetSubtree(0), parameters, paramValues));
|
---|
306 | // }
|
---|
307 | if (node.Symbol is StartSymbol) {
|
---|
308 | //var alpha = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
|
---|
309 | //var beta = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
|
---|
310 |
|
---|
311 | // return Expression.Call(d_Add_d, beta,
|
---|
312 | // Expression.Call(d_Mul_d, alpha, MakeExpr(node.GetSubtree(0), parameters, dv)));
|
---|
313 | return MakeExpr(node.GetSubtree(0), parameters, dv);
|
---|
314 | }
|
---|
315 | throw new ConversionException();
|
---|
316 | }
|
---|
317 |
|
---|
318 |
|
---|
319 | // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination
|
---|
320 | // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available.
|
---|
321 | private static int FindOrCreateParameter(Dictionary<DataForVariable, int> parameters,
|
---|
322 | string varName, string varValue = "", int lag = 0) {
|
---|
323 | var data = new DataForVariable(varName, varValue, lag);
|
---|
324 | int idx = -1;
|
---|
325 | if (parameters.TryGetValue(data, out idx)) return idx;
|
---|
326 | else parameters[data] = parameters.Count;
|
---|
327 | return idx;
|
---|
328 | }
|
---|
329 |
|
---|
330 | public static bool IsCompatible(ISymbolicExpressionTree tree) {
|
---|
331 | var containsUnknownSymbol = (
|
---|
332 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
333 | where
|
---|
334 | !(n.Symbol is HeuristicLab.Problems.DataAnalysis.Symbolic.Variable) &&
|
---|
335 | !(n.Symbol is BinaryFactorVariable) &&
|
---|
336 | !(n.Symbol is FactorVariable) &&
|
---|
337 | !(n.Symbol is LaggedVariable) &&
|
---|
338 | !(n.Symbol is HeuristicLab.Problems.DataAnalysis.Symbolic.Constant) &&
|
---|
339 | !(n.Symbol is Addition) &&
|
---|
340 | !(n.Symbol is Subtraction) &&
|
---|
341 | !(n.Symbol is Multiplication) &&
|
---|
342 | !(n.Symbol is Division) &&
|
---|
343 | !(n.Symbol is Logarithm) &&
|
---|
344 | !(n.Symbol is Exponential) &&
|
---|
345 | !(n.Symbol is SquareRoot) &&
|
---|
346 | !(n.Symbol is Square) &&
|
---|
347 | !(n.Symbol is Sine) &&
|
---|
348 | !(n.Symbol is Cosine) &&
|
---|
349 | !(n.Symbol is Tangent) &&
|
---|
350 | !(n.Symbol is StartSymbol)
|
---|
351 | select n).Any();
|
---|
352 | return !containsUnknownSymbol;
|
---|
353 | }
|
---|
354 | #region exception class
|
---|
355 | [Serializable]
|
---|
356 | public class ConversionException : Exception {
|
---|
357 |
|
---|
358 | public ConversionException() {
|
---|
359 | }
|
---|
360 |
|
---|
361 | public ConversionException(string message) : base(message) {
|
---|
362 | }
|
---|
363 |
|
---|
364 | public ConversionException(string message, Exception inner) : base(message, inner) {
|
---|
365 | }
|
---|
366 |
|
---|
367 | protected ConversionException(
|
---|
368 | SerializationInfo info,
|
---|
369 | StreamingContext context) : base(info, context) {
|
---|
370 | }
|
---|
371 | }
|
---|
372 | #endregion
|
---|
373 | }
|
---|
374 | }
|
---|