Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2789_MathNetNumerics-Exploration/HeuristicLab.Algorithms.DataAnalysis.Experimental/SymbolicRegressionConstantOptimizationEvaluator.cs @ 16099

Last change on this file since 16099 was 15352, checked in by gkronber, 7 years ago

#2789 testing alglib RBF and splines

File size: 21.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
34using DiffSharp.Interop.Float64;
35using System.Diagnostics;
36
37namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
38  [Item("Constant Optimization Evaluator with Constraints", "")]
39  [StorableClass]
40  public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
41    private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
42    private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
43    private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
44    private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
45    private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
46    private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
47
48    public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
49      get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
50    }
51    public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
52      get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
53    }
54    public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
55      get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
56    }
57    public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
58      get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
59    }
60    public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
61      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
62    }
63    public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
64      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
65    }
66
67
68    public IntValue ConstantOptimizationIterations {
69      get { return ConstantOptimizationIterationsParameter.Value; }
70    }
71    public DoubleValue ConstantOptimizationImprovement {
72      get { return ConstantOptimizationImprovementParameter.Value; }
73    }
74    public PercentValue ConstantOptimizationProbability {
75      get { return ConstantOptimizationProbabilityParameter.Value; }
76    }
77    public PercentValue ConstantOptimizationRowsPercentage {
78      get { return ConstantOptimizationRowsPercentageParameter.Value; }
79    }
80    public bool UpdateConstantsInTree {
81      get { return UpdateConstantsInTreeParameter.Value.Value; }
82      set { UpdateConstantsInTreeParameter.Value.Value = value; }
83    }
84
85    public bool UpdateVariableWeights {
86      get { return UpdateVariableWeightsParameter.Value.Value; }
87      set { UpdateVariableWeightsParameter.Value.Value = value; }
88    }
89
90    public override bool Maximization {
91      get { return true; }
92    }
93
94    [StorableConstructor]
95    protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { }
96    protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner)
97      : base(original, cloner) {
98    }
99    public SymbolicRegressionConstantOptimizationEvaluator()
100      : base() {
101      Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true));
102      Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true) { Hidden = true });
103      Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true));
104      Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true));
105      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
106      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be  optimized.", new BoolValue(true)) { Hidden = true });
107    }
108
109    public override IDeepCloneable Clone(Cloner cloner) {
110      return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner);
111    }
112
113    [StorableHook(HookType.AfterDeserialization)]
114    private void AfterDeserialization() {
115      if (!Parameters.ContainsKey(UpdateConstantsInTreeParameterName))
116        Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)));
117      if (!Parameters.ContainsKey(UpdateVariableWeightsParameterName))
118        Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be  optimized.", new BoolValue(true)));
119    }
120
121    public override IOperation InstrumentedApply() {
122      var solution = SymbolicExpressionTreeParameter.ActualValue;
123      double quality;
124      if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
125        IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
126        quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
127           constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree);
128
129        if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
130          var evaluationRows = GenerateRowsToEvaluate();
131          quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
132        }
133      } else {
134        var evaluationRows = GenerateRowsToEvaluate();
135        quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
136      }
137      QualityParameter.ActualValue = new DoubleValue(quality);
138
139      return base.InstrumentedApply();
140    }
141
142    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
143      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
144      EstimationLimitsParameter.ExecutionContext = context;
145      ApplyLinearScalingParameter.ExecutionContext = context;
146
147      // Pearson R² evaluator is used on purpose instead of the const-opt evaluator,
148      // because Evaluate() is used to get the quality of evolved models on
149      // different partitions of the dataset (e.g., best validation model)
150      double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
151
152      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
153      EstimationLimitsParameter.ExecutionContext = null;
154      ApplyLinearScalingParameter.ExecutionContext = null;
155
156      return r2;
157    }
158
159    public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
160      ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
161      int maxIterations, bool updateVariableWeights = true,
162      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
163      bool updateConstantsInTree = true) {
164
165      // numeric constants in the tree become variables for constant opt
166      // variables in the tree become parameters (fixed values) for constant opt
167      // for each parameter (variable in the original tree) we store the
168      // variable name, variable value (for factor vars) and lag as a DataForVariable object.
169      // A dictionary is used to find parameters
170      double[] initialConstants;
171      var parameters = new List<TreeToDiffSharpConverter.DataForVariable>();
172
173      Func<DV, D> func;
174      if (!TreeToDiffSharpConverter.TryConvertToDiffSharp(tree, updateVariableWeights, out parameters, out initialConstants,
175        out func))
176        throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree.");
177      if (parameters.Count == 0) return 0.0; // gkronber: constant expressions always have a R² of 0.0
178
179      var parameterEntries = parameters.ToArray(); // order of entries must be the same for x
180
181      // extract inital constants
182      double[] c = new double[initialConstants.Length];
183      double[] s = new double[c.Length];
184      {
185        Array.Copy(initialConstants, 0, c, 0, initialConstants.Length);
186
187        // c[0] = 1.0;
188        // c[1] = 0.0;
189        // Array.Copy(initialConstants, 0, c, 2, initialConstants.Length);
190
191        // s[0] = 1.0;
192        // s[1] = 1.0;
193        // Array.Copy(initialConstants.Select(ci=>Math.Abs(ci)).ToArray()
194        //   , 0, s, 2, initialConstants.Length);
195      }
196      s = Enumerable.Repeat(0.01, c.Length).ToArray();
197
198      double[] originalConstants = (double[])c.Clone();
199      double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
200
201      alglib.minnlcstate state;
202      alglib.minnlcreport rep;
203
204      IDataset ds = problemData.Dataset;
205      double[,] x = new double[rows.Count(), parameters.Count];
206      int col = 0;
207      int row = 0;
208      foreach (var info in parameterEntries) {
209        row = 0;
210        // copy training rows
211        foreach (var r in rows) {
212          if (ds.VariableHasType<double>(info.variableName)) {
213            x[row, col] = ds.GetDoubleValue(info.variableName, r + info.lag);
214          } else if (ds.VariableHasType<string>(info.variableName)) {
215            x[row, col] = ds.GetStringValue(info.variableName, r) == info.variableValue ? 1 : 0;
216          } else throw new InvalidProgramException("found a variable of unknown type");
217
218          row++;
219        }
220        col++;
221      }
222
223      var target = problemData.TargetVariable;
224
225      // determine rows with constraints by checking of any constraint column contains a value
226      var constraintColNames = parameterEntries
227                .Select(e => e.variableName)
228                .Select(name => string.Format("df/d({0})", name))
229                .ToArray();
230      var constraintRows = Enumerable.Range(0, problemData.Dataset.Rows)
231                .Where(rIdx => constraintColNames.Any(name => !double.IsNaN(ds.GetDoubleValue(name, rIdx))));
232
233      double[,] constraintX = new double[constraintRows.Count(), parameters.Count]; // inputs for constraint values
234      double[,] constraints = new double[constraintRows.Count(), parameters.Count + 1]; // constraint values +1 column for constraint values for f(x)
235      string[,] comp = new string[constraintRows.Count(), parameters.Count + 1]; // comparison types <= = >=
236      int eqConstraints = 0;
237      int ieqConstraints = 0;
238      col = 0;
239      foreach (var info in parameterEntries) {
240        row = 0;
241        // find the matching df/dx column
242        var colName = string.Format("df/d({0})", info.variableName);
243        var compColName = string.Format("df/d({0}) constraint-type", info.variableName);
244
245        foreach (var r in constraintRows) {
246          constraintX[row, col] = ds.GetDoubleValue(info.variableName, r);
247          if (ds.VariableNames.Contains(colName)) {
248            constraints[row, col] = ds.GetDoubleValue(colName, r);
249            comp[row, col] = ds.GetStringValue(compColName, r);
250
251            if (comp[row, col] == "EQ") eqConstraints++;
252            else if (comp[row, col] == "LEQ" || comp[row, col] == "GEQ") ieqConstraints++;
253          }
254
255          row++;
256        }
257        col++;
258      }
259
260      // f(x) constraint
261      row = 0;
262      col = constraints.GetLength(1) - 1;
263      foreach (var r in constraintRows) {
264        constraints[row, col] = ds.GetDoubleValue("f(x)", r);
265        comp[row, col] = ds.GetStringValue("f(x) constraint-type", r);
266        if (comp[row, col] == "EQ") eqConstraints++;
267        else if (comp[row, col] == "LEQ" || comp[row, col] == "GEQ") ieqConstraints++;
268        row++;
269      }
270
271      double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
272
273      alglib.ndimensional_jac jac = CreateJac(x, y, constraintX, constraints, comp, func);
274      double rho = 10000;
275      int outeriters = 3;
276      int updateFreq = 10;
277      try {
278        alglib.minnlccreate(c, out state);
279        alglib.minnlcsetalgoaul(state, rho, outeriters);
280        alglib.minnlcsetcond(state, 0.0, 0.0, 0.0, maxIterations);
281        alglib.minnlcsetscale(state, s);
282        alglib.minnlcsetprecexactlowrank(state, updateFreq);
283        alglib.minnlcsetnlc(state, eqConstraints, ieqConstraints);
284        alglib.minnlcoptimize(state, jac, null, null);
285        alglib.minnlcresults(state, out c, out rep);
286      } catch (ArithmeticException) {
287        return originalQuality;
288      } catch (alglib.alglibexception) {
289        return originalQuality;
290      }
291
292      //  -7  => constant optimization failed due to wrong gradient
293      //  -8  => integrity check failed (e.g. gradient NaN
294      if (rep.terminationtype != -7 && rep.terminationtype != -8)
295        UpdateConstants(tree, c.ToArray(), updateVariableWeights);
296      else {
297        UpdateConstants(tree, Enumerable.Repeat(0.0, c.Length).ToArray(), updateVariableWeights);
298      }
299      var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
300      Console.WriteLine("{0:N4} {1:N4} {2} {3}", originalQuality, quality, state.fi.Skip(1).Where(fii => fii > 0).Count(), rep.terminationtype);
301
302      if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.ToArray(), updateVariableWeights);
303      if (
304        // originalQuality - quality > 0.001 ||
305        double.IsNaN(quality)) {
306        UpdateConstants(tree, originalConstants.ToArray(), updateVariableWeights);
307        return originalQuality;
308      }
309      return quality;
310    }
311
312    private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants, bool updateVariableWeights) {
313      int i = 0;
314      foreach (var node in tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>()) {
315        ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
316        VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
317        FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
318        if (constantTreeNode != null)
319          constantTreeNode.Value = constants[i++];
320        else if (updateVariableWeights && variableTreeNodeBase != null)
321          variableTreeNodeBase.Weight = constants[i++];
322        else if (factorVarTreeNode != null) {
323          for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
324            factorVarTreeNode.Weights[j] = constants[i++];
325        }
326      }
327    }
328
329    private static alglib.ndimensional_jac CreateJac(
330      double[,] x, // x is same size as y
331      double[] y, // only targets
332      double[,] constraintX, // inputs for constraints
333      double[,] constraints, // df/d(xi), same size as constraintX, same number of rows as x less columns
334      string[,] comparison, // {LEQ, GEQ, EQ } same size as constraints
335      Func<DV, D> func) {
336      Trace.Assert(x.GetLength(0) == y.Length);
337      Trace.Assert(x.GetLength(1) == constraintX.GetLength(1) - 1);
338      Trace.Assert(constraintX.GetLength(0) == constraints.GetLength(0));
339      Trace.Assert(constraintX.GetLength(1) == constraints.GetLength(1));
340      Trace.Assert(constraints.GetLength(0) == comparison.GetLength(0));
341      Trace.Assert(constraints.GetLength(1) == comparison.GetLength(1));
342      return (double[] c, double[] fi, double[,] jac, object o) => {
343        // objective function is sum of squared errors
344        int nRows = y.Length;
345        int nParams = x.GetLength(1);
346        // zero fi and jac
347        Array.Clear(fi, 0, fi.Length);
348        Array.Clear(jac, 0, jac.Length);
349        var p = new double[nParams + c.Length];
350        Array.Copy(c, 0, p, nParams, c.Length); // copy c to the end of the function parameters vector
351        for (int rowIdx = 0; rowIdx < nRows; rowIdx++) {
352          // copy x_i to the beginning of the function parameters vector
353          for (int cIdx = 0; cIdx < nParams; cIdx++)
354            p[cIdx] = x[rowIdx, cIdx];
355
356          double f = (double)func(p);
357          double[] g = (double[])AD.Grad(func, p);
358          var e = y[rowIdx] - f;
359          fi[0] += e * e;
360          // update gradient
361          for (int colIdx = 0; colIdx < c.Length; colIdx++) {
362            jac[0, colIdx] += -2 * e * g[nParams + colIdx]; // skip the elements for the variable values
363          }
364        }
365
366        int fidx = 1;
367
368        // eq constraints
369        for (int rowIdx = 0; rowIdx < constraintX.GetLength(0); rowIdx++) {
370          for (var colIdx = 0; colIdx < constraintX.GetLength(1); colIdx++) {
371            if (comparison[rowIdx, colIdx] == "EQ") {
372              throw new NotSupportedException();
373            }
374          }
375        }
376        // ineq constraints
377        for (int rowIdx = 0; rowIdx < constraintX.GetLength(0); rowIdx++) {
378          for (int colIdx = 0; colIdx < constraints.GetLength(1); colIdx++) {
379            // there is a constraint value
380            if (!double.IsNaN(constraints[rowIdx, colIdx]) && !string.IsNullOrEmpty(comparison[rowIdx, colIdx])) {
381              var factor = (comparison[rowIdx, colIdx] == "LEQ") ? 1.0
382              : comparison[rowIdx, colIdx] == "GEQ" ? -1.0 : 0.0;
383
384              // copy x_i to the beginning of the function parameters vector
385              for (int cIdx = 0; cIdx < nParams; cIdx++)
386                p[cIdx] = constraintX[rowIdx, cIdx];
387
388              // f(x) constraint
389              if (colIdx == constraints.GetLength(1) - 1) {
390
391                fi[fidx] = factor * ((double)(func(p)) - constraints[rowIdx, colIdx]);
392                var g = (double[])AD.Grad(func, p);
393                for (int jacIdx = 0; jacIdx < c.Length; jacIdx++) {
394                  jac[fidx, jacIdx] = factor * g[nParams + jacIdx]; // skip the elements for the variable values
395                }
396                fidx++;
397              } else {
398                // df / dxi constraint
399                var g = (double[])AD.Grad(func, p);
400                fi[fidx] = factor * g[colIdx];
401
402                var hess = AD.Hessian(func, p);
403                for (int jacIdx = 0; jacIdx < c.Length; jacIdx++) {
404                  jac[fidx, jacIdx] = factor * (double)hess[colIdx, nParams + jacIdx]; // skip the elements for the variable values
405                }
406                fidx++;
407              }
408            }
409          }
410        }
411      };
412    }
413
414    public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
415      return TreeToAutoDiffTermConverter.IsCompatible(tree);
416    }
417  }
418}
Note: See TracBrowser for help on using the repository browser.