Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2789_MathNetNumerics-Exploration/HeuristicLab.Algorithms.DataAnalysis.Experimental/SBART.cs @ 17078

Last change on this file since 17078 was 15469, checked in by gkronber, 7 years ago

#2789 trying to get SBART to work correctly.

File size: 20.2 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Diagnostics;
4using System.Linq;
5using System.Runtime.InteropServices;
6using System.Text;
7using System.Threading.Tasks;
8using HeuristicLab.Common;
9using HeuristicLab.Core;
10using HeuristicLab.Problems.DataAnalysis;
11
12namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
13  public static class SBART {
14    /*
15           # A Cubic B-spline Smoothing routine.
16
17    #
18    #          The algorithm minimises:
19    #
20    #      (1/n) * sum ws(i)**2 * (ys(i)-sz(i))**2 + lambda* int ( sz"(xs) )**2 dxs
21    #
22    #        lambda is a function of the spar which is assumed to be between
23    #        0 and 1
24
25
26            # Input
27
28    #   n               number of data points
29    #  ys(n)      vector of length n containing the observations
30    #  ws(n)            vector containing the weights given to each data point
31    #  xs(n)            vector containing the ordinates of the observations
32
33
34    #  nk               number of b-spline coefficients to be estimated
35    #                   nk <= n+2
36    #  knot(nk+4)       vector of knot points defining the cubic b-spline basis.
37
38
39    #  spar             penalised likelihood smoothing parameter
40    #  ispar            indicator saying if spar is supplied or to be estimated
41    #  lspar, uspar     lower and upper values for spar 0.,1. are good values
42    #  tol              used in Golden Search routine
43
44    #  isetup           setup indicator
45
46    #  icrit            indicator saying which cross validation score
47    #       is to be computed
48
49    #  ld4              the leading dimension of abd (ie ld4=4)
50    #  ldnk             the leading dimension of p2ip (not referenced)
51
52
53                    # Output
54
55    #   coef(nk)       vector of spline coefficients
56    #   sz(n)          vector of smoothed z-values
57    #   lev(n)         vector of leverages
58    #   crit           either ordinary of generalized CV score
59    #   ier            error indicator
60    #                  ier = 0 ___  everything fine
61    #                  ier = 1 ___  spar too small or too big
62    #                               problem in cholesky decomposition
63
64
65
66             # Working arrays/matrix
67    #   xwy         X'Wy
68    #   hs0,hs1,hs2,hs3   the diagonals of the X'WX matrix
69    #   sg0,sg1,sg2,sg3   the diagonals of the Gram matrix
70    #   abd(ld4,nk)       [ X'WX+lambda*SIGMA] in diagonal form
71    #   p1ip(ld4,nk)       inner products between columns of L inverse
72    #   p2ip(ldnk,nk)      all inner products between columns of L inverse
73    #                          L'L = [X'WX+lambdaSIGMA]  NOT REFERENCED
74
75    */
76
77    /*
78     * sbart(xs,ys,ws,n,knot,nk,
79          coef,sz,lev,
80          crit,icrit,spar,ispar,lspar,uspar,tol,
81          isetup,
82          xwy,
83          hs0,hs1,hs2,hs3,
84          sg0,sg1,sg2,sg3,
85          abd,p1ip,p2ip,ld4,ldnk,ier)
86
87    */
88
89
90
91    // To build the fortran library (x64) use:
92    // > ifort /dll /Qm64 /libs:static /winapp sbart.f interv.f bsplvb.f spbfa.f spbsl.f bvalue.f scopy.f ssort.f sdot.f saxpy.f bsplvd.f /Fesbart_x64.dll
93    // check dumpbin /EXPORTS sbart_x64.dll
94    // and   dumpbin /IMPORTS sbart_x64.dll
95    [DllImport("sbart_x64.dll", CallingConvention = CallingConvention.Cdecl, EntryPoint = "sbart")]
96    public static extern void sbart_x64(
97     float[] xs, float[] ys, float[] ws, ref int n, float[] knot, ref int nk,
98     float[] coeff, float[] sz, float[] lev,
99     ref float crit, ref int icrit, ref float spar, ref int ispar, ref float lspar, ref float uspar, ref float tol,
100     ref int isetup,
101     float[] xwy,
102     float[] hs0, float[] hs1, float[] hs2, float[] hs3,
103     float[] sg0, float[] sg1, float[] sg2, float[] sg3,
104     float[,] abd, float[,] p1ip, float[,] p2ip, ref int ld4, ref int ldnk, ref int ier);
105
106    [DllImport("sbart_x86.dll", CallingConvention = CallingConvention.Cdecl, EntryPoint = "sbart")]
107    public static extern void sbart_x86();
108
109
110    [DllImport("sbart_x64.dll", CallingConvention = CallingConvention.Cdecl, EntryPoint = "sknotl")]
111    public static extern void sknotl_x64(float[] x, ref int n, float[] knot, ref int k);
112    [DllImport("sbart_x64.dll", CallingConvention = CallingConvention.Cdecl, EntryPoint = "setreg")]
113    public static extern void setreg_x64(float[] x, float[] y, float[] w, ref int n, float[] xw, ref int nx, ref float min, ref float range, float[] knot, ref int nk);
114    /*
115     * calculates value at  x  of  jderiv-th derivative of spline from b-repr.
116    c  the spline is taken to be continuous from the right, EXCEPT at the
117    c  rightmost knot, where it is taken to be continuous from the left.
118    c
119    c******  i n p u t ******
120    c  t, bcoef, n, k......forms the b-representation of the spline  f  to
121    c        be evaluated. specifically,
122    c  t.....knot sequence, of length  n+k, assumed nondecreasing.
123    c  bcoef.....b-coefficient sequence, of length  n .
124    c  n.....length of  bcoef  and dimension of spline(k,t),
125    c        a s s u m e d  positive .
126    c  k.....order of the spline .
127    c
128    c  w a r n i n g . . .   the restriction  k .le. kmax (=20)  is imposed
129    c        arbitrarily by the dimension statement for  aj, dl, dr  below,
130    c        but is  n o w h e r e  c h e c k e d  for.
131    c
132    c  x.....the point at which to evaluate .
133    c  jderiv.....integer giving the order of the derivative to be evaluated
134    c        a s s u m e d  to be zero or positive.
135    c
136    c******  o u t p u t  ******
137    c  bvalue.....the value of the (jderiv)-th derivative of  f  at  x .
138    c
139    c******  m e t h o d  ******
140    c     The nontrivial knot interval  (t(i),t(i+1))  containing  x  is lo-
141    c  cated with the aid of  interv . The  k  b-coeffs of  f  relevant for
142    c  this interval are then obtained from  bcoef (or taken to be zero if
143    c  not explicitly available) and are then differenced  jderiv  times to
144    c  obtain the b-coeffs of  (d**jderiv)f  relevant for that interval.
145    c  Precisely, with  j = jderiv, we have from x.(12) of the text that
146    c
147    c     (d**j)f  =  sum ( bcoef(.,j)*b(.,k-j,t) )
148    c
149    c  where
150    c                   / bcoef(.),                     ,  j .eq. 0
151    c                   /
152    c    bcoef(.,j)  =  / bcoef(.,j-1) - bcoef(.-1,j-1)
153    c                   / ----------------------------- ,  j .gt. 0
154    c                   /    (t(.+k-j) - t(.))/(k-j)
155    c
156    c     Then, we use repeatedly the fact that
157    c
158    c    sum ( a(.)*b(.,m,t)(x) )  =  sum ( a(.,x)*b(.,m-1,t)(x) )
159    c  with
160    c                 (x - t(.))*a(.) + (t(.+m-1) - x)*a(.-1)
161    c    a(.,x)  =    ---------------------------------------
162    c                 (x - t(.))      + (t(.+m-1) - x)
163    c
164    c  to write  (d**j)f(x)  eventually as a linear combination of b-splines
165    c  of order  1 , and the coefficient for  b(i,1,t)(x)  must then be the
166    c  desired number  (d**j)f(x). (see x.(17)-(19) of text).
167     */
168    [DllImport("sbart_x64.dll", CallingConvention = CallingConvention.Cdecl, EntryPoint = "bvalue")]
169    public static extern float bvalue(float[] t, float[] bcoeff, ref int n, ref int k, ref float x, ref int jderiv);
170
171    public class SBART_Report {
172      public double smoothingParameter;
173      public double gcv;
174      public double[] leverage;     
175    }
176
177
178    public static IRegressionModel CalculateSBART(double[] x, double[] y, double[] w, int nKnots, string targetVariable, string[] inputVars, out SBART_Report rep) {
179      // use kMeans to find knot points
180      double[,] xy = new double[x.Length, 1];
181      for (int i = 0; i < x.Length; i++) xy[i, 0] = x[i];
182      double[,] c;
183      int[] xyc;
184      int info;
185      alglib.kmeansgenerate(xy, x.Length, 1, nKnots, 10, out info, out c, out xyc);
186      var g = x.Zip(xyc, (double xi, int ci) => Tuple.Create(xi,ci)).GroupBy(t => t.Item2).Select(gr => HeuristicLab.Common.EnumerableStatisticExtensions.Median(gr.Select(gi=>gi.Item1))).ToArray();
187      // find medians
188      double[] knots = new double[nKnots];
189      for (int i = 0; i < g.Length; i++) knots[i] = g[i];
190      return CalculateSBART(x, y, w, knots, targetVariable, inputVars, out rep);
191    }
192
193    public static IRegressionModel CalculateSBART(double[] x, double[] y, double[] w, double[] knots, string targetVariable, string[] inputVars, out SBART_Report rep) {
194      int ier = 99;
195      int tries = 0;
196      float tol = 0.01f;
197
198      do {
199        tries++;
200        float[] xs = x.Select(xi => (float)xi).ToArray();
201        float[] ys = y.Select(xi => (float)xi).ToArray();
202        float[] ws = w.Select(xi => (float)xi).ToArray();
203        float[] k = knots.Select(xi => (float)xi).ToArray();
204
205        int n = xs.Length;
206        if (n < 4) throw new ArgumentException("n < 4");
207        if (knots.Length > n + 2) throw new ArgumentException("more than n+2 knots");
208        float[] xw = new float[n];
209        int nx = -99;
210        float min = 0.0f;
211        float range = 0.0f;
212        int nk = -99;
213        float[] regKnots = new float[n + 6];
214
215        // sort xs together with ys and ws
216        // combine rows with duplicate x values
217        // transform x to range [0 .. 1]
218        // create a set of knots (using a heuristic for the number of knots)
219        // knots are located at data points. denser regions of x contain more knots.
220        SBART.setreg_x64(xs, ys, ws,
221          ref n, xw, ref nx, ref min, ref range, regKnots, ref nk);
222
223        // in this case we want to use the knots supplied by the caller.
224        // the knot values produced by setreg are overwritten with scaled knots supplied by caller.
225        // knots must be ordered as well.
226        int i = 0;
227        // left boundary
228        regKnots[i++] = 0.0f;
229        regKnots[i++] = 0.0f;
230        regKnots[i++] = 0.0f;
231        regKnots[i++] = 0.0f;
232        int j = 1;
233        foreach (var knot in knots.OrderBy(ki => ki)) {
234          regKnots[i++] = xs[j * nx / (knots.Length + 1)];  // ((float)knot - min) / range;
235          j++;
236        }
237        // right boundary
238        regKnots[i++] = 1.0f;
239        regKnots[i++] = 1.0f;
240        regKnots[i++] = 1.0f;
241        regKnots[i++] = 1.0f;
242        nk = i - 4;
243
244        float criterion = -99.0f; // GCV
245        int icrit = 1; // calculate GCV
246        float smoothingParameter = -99.0f;
247        int smoothingParameterIndicator = 0;
248        float lowerSmoothingParameter = 0.0f;
249        float upperSmoothingParameter = 1.0f;
250        int isetup = 0; // not setup?
251
252        // results
253        float[] coeff = new float[nk];
254        float[] leverage = new float[nx];
255        float[] y_smoothed = new float[nx];
256
257        // working arrays for sbart
258        float[] xwy = new float[nk];
259        float[] hs0 = new float[nk];
260        float[] hs1 = new float[nk];
261        float[] hs2 = new float[nk];
262        float[] hs3 = new float[nk];
263        float[] sg0 = new float[nk];
264        float[] sg1 = new float[nk];
265        float[] sg2 = new float[nk];
266        float[] sg3 = new float[nk];
267        int ld4 = 4;
268        float[,] adb = new float[ld4, nk];
269
270        float[,] p1ip = new float[nk, ld4];
271        int ldnk = nk + 4;
272        float[,] p2ip = new float[nk, nx];
273
274        SBART.sbart_x64(xs.Take(nx).ToArray(), ys.Take(nx).ToArray(), ws.Take(nx).ToArray(), ref nx,
275          regKnots, ref nk,
276          coeff, y_smoothed, leverage,
277          ref criterion, ref icrit,
278          ref smoothingParameter, ref smoothingParameterIndicator, ref lowerSmoothingParameter, ref upperSmoothingParameter,
279          ref tol, ref isetup,
280          xwy, hs0, hs1, hs2, hs3, sg0, sg1, sg2, sg3, adb, p1ip, p2ip, ref ld4, ref ldnk, ref ier);
281
282
283        if (ier > 0) {
284          Console.WriteLine("ERROR {0} smooth {1}  criterion {2}", ier, smoothingParameter, criterion);
285          tol *= 2;
286          tol = Math.Min(tol, 1.0f);
287        } else {
288          if (tries > 1) {
289            Console.WriteLine("Success {0} smooth {1}  criterion {2}", ier, smoothingParameter, criterion);
290          }
291          rep = new SBART_Report();
292          rep.gcv = criterion;
293          rep.smoothingParameter = smoothingParameter;
294          rep.leverage = leverage.Select(li => (double)li).ToArray();
295          return new BartRegressionModel(regKnots.Take(nk + 4).ToArray(), coeff, targetVariable, inputVars, min, range);
296        }
297      } while (ier > 0);
298      throw new ArgumentException();
299    }
300
301    public static IRegressionModel CalculateSBART(double[] x, double[] y,
302      string targetVariable, string[] inputVars,
303      out SBART_Report report) {
304      var w = Enumerable.Repeat(1.0, x.Length).ToArray();
305
306      int n = x.Length;
307      int ic = n - 1;
308      int ier = -99;
309      int nk = n;
310      float[] knots = new float[nk + 6];
311
312      float crit = -99.0f;
313      int icrit = 1; // 0..don't calc CV,  1 .. GCV, 2 CV
314
315      float smoothingParameter = -99.0f;
316      int smoothingParameterIndicator = 0;
317      float lowerSmoothingParameter = 0f;
318      float upperSmoothingParameter = 1.0f;
319      float tol = 0.02f;
320      int isetup = 0; // not setup?
321
322      float min = -99.0f;
323      float range = -99.0f;
324
325      if (Environment.Is64BitProcess) {
326        float[] xw = new float[n];
327        int nx = -99;
328        float[] xs = x.Select(xi => (float)xi).ToArray();
329        float[] ys = y.Select(yi => (float)yi).ToArray();
330        float[] ws = w.Select(wi => (float)wi).ToArray();
331       
332        // sort xs together with ys and ws
333        // combine rows with duplicate x values
334        // create a set of knots (using a heuristic for the number of knots)
335        // knots are located at data points. denser regions of x contain more knots.
336        SBART.setreg_x64(xs, ys, ws,
337          ref n, xw, ref nx, ref min, ref range, knots, ref nk);
338
339        /* use all points as knot points
340        nk = nx + 2;
341        knots[0] = xs[0];
342        knots[1] = xs[0];
343        knots[2] = xs[0];
344        Array.Copy(xs, 0, knots, 3, nx);
345        knots[nx + 3] = xs[nx - 1];
346        knots[nx + 4] = xs[nx - 1];
347        knots[nx + 5] = xs[nx - 1];
348        */
349
350        /*
351        // use uniform grid of knots
352        nk = 20;
353        knots = new float[nk + 4];
354        knots[0] = xs[0];
355        knots[1] = xs[0];
356        knots[2] = xs[0];
357        for(int i = 3; i<nk+1;i++) {
358          knots[i] = (i-3f) / (nk-1);
359        }
360        knots[nk] = xs[nx - 1];
361        knots[nk + 1] = xs[nx - 1];
362        knots[nk + 2] = xs[nx - 1];
363        knots[nk + 3] = xs[nx - 1];
364        */
365        if (nx < 4) {
366          report = new SBART_Report();
367          report.leverage = new double[0];
368          return new ConstantModel(ys.Take(nx).Average(), targetVariable);
369        }
370
371        float[] coeff = new float[nk];
372        float[] leverage = new float[nx];
373        float[] y_smoothed = new float[nx];
374
375
376        // working arrays for sbart
377        float[] xwy = new float[nk];
378        float[] hs0 = new float[nk];
379        float[] hs1 = new float[nk];
380        float[] hs2 = new float[nk];
381        float[] hs3 = new float[nk];
382        float[] sg0 = new float[nk];
383        float[] sg1 = new float[nk];
384        float[] sg2 = new float[nk];
385        float[] sg3 = new float[nk];
386        int ld4 = 4;
387        float[,] adb = new float[ld4, nk];
388
389        float[,] p1ip = new float[nk, ld4];
390        int ldnk = nk + 4;
391        float[,] p2ip = new float[nk, nx];
392
393        SBART.sbart_x64(xs.Take(nx).ToArray(), ys.Take(nx).ToArray(), ws.Take(nx).ToArray(), ref nx,
394          knots, ref nk,
395          coeff, y_smoothed, leverage,
396          ref crit, ref icrit,
397          ref smoothingParameter, ref smoothingParameterIndicator, ref lowerSmoothingParameter, ref upperSmoothingParameter,
398          ref tol, ref isetup,
399          xwy, hs0, hs1, hs2, hs3, sg0, sg1, sg2, sg3, adb, p1ip, p2ip, ref ld4, ref ldnk, ref ier);
400
401        if (ier > 0) throw new ArgumentException(ier.ToString());
402
403        report = new SBART_Report();
404        report.gcv = crit;
405        report.smoothingParameter = smoothingParameter;
406        report.leverage = leverage.Select(li => (double)li).ToArray();
407
408        return new BartRegressionModel(knots.Take(nk+4).ToArray(), coeff, targetVariable, inputVars, min, range);
409
410      } else {
411        throw new NotSupportedException();
412      }
413
414    }
415
416    public class BartRegressionModel : NamedItem, IRegressionModel {
417      private float[] knots;
418      private float[] bcoeff;
419      private double min;
420      private double range;
421      public string TargetVariable { get; set; }
422
423      private string[] variablesUsedForPrediction;
424      public IEnumerable<string> VariablesUsedForPrediction {
425        get {
426          return variablesUsedForPrediction;
427        }
428      }
429
430      public BartRegressionModel(BartRegressionModel orig, Cloner cloner) {
431        this.knots = orig.knots;
432        this.bcoeff = orig.bcoeff;
433        this.min = orig.min;
434        this.range = orig.range;
435        this.TargetVariable = orig.TargetVariable;
436        this.variablesUsedForPrediction = orig.variablesUsedForPrediction;
437      }
438      public BartRegressionModel(float[] knots, float[] bcoeff, string targetVariable, string[] inputVars, double min, double range) {
439        this.variablesUsedForPrediction = inputVars;
440        this.TargetVariable = targetVariable;
441        this.knots = knots;
442        this.bcoeff = bcoeff;
443        this.range = range;
444        this.min = min;
445      }
446
447      public event EventHandler TargetVariableChanged;
448
449      public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
450        return new RegressionSolution(this, (IRegressionProblemData) problemData.Clone());
451      }
452
453      public double GetEstimatedValue(double xx) {
454        float x = (float)((xx - min) / range);
455        int n = bcoeff.Length;
456        int k = 4;
457        int zero = 0;
458        int one = 1;
459        int two = 2;
460
461
462        // linear extrapolation
463        if (x < 0) {
464          float x0 = 0.0f;
465          var y0 = bvalue(knots, bcoeff, ref n, ref k, ref x0, ref zero);
466          var y0d = bvalue(knots, bcoeff, ref n, ref k, ref x0, ref one);
467          return y0 + x * y0d;
468        }
469        if (x > 1) {
470          float x1 = 1.0f;
471          var y1 = bvalue(knots, bcoeff, ref n, ref k, ref x1, ref zero);
472          var y1d = bvalue(knots, bcoeff, ref n, ref k, ref x1, ref one);
473          return y1 + (x-1) * y1d;
474        }
475
476        lock (this) {
477          return bvalue(knots, bcoeff, ref n, ref k, ref x, ref zero);
478        }
479
480        // piecewise constant approximation
481        // if (xx <= x[0]) return bcoeff[0];
482        // if (xx >= x[n - 1]) return bcoeff[n - 1];
483        // for(int i=1;i<n-2;i++) {
484        //   var h1 = xx - x[i];
485        //   var h2 = xx - x[i + 1];
486        //   if(h1 > 0 && h2 <= 0) {
487        //     if (h1 < h2) return bcoeff[i]; else return bcoeff[i + 1];
488        //   }
489        // }
490        // return 0.0;
491
492        // // piecewise linear approximation
493        // int n = x.Length;
494        // if (xx <= x[0]) {
495        //   double h = xx - x[0];
496        //   return h * (y[1] - y[0]) / (x[1] - x[0]) + y[0];
497        // } else if (xx >= x[n-1]) {
498        //   double h = xx - x[n-1];
499        //   return h * (y[n-1] - y[n-2]) / (x[n-1] - x[n-2]) + y[n-1];
500        // } else {
501        //   // binary search
502        //   int lower = 0;
503        //   int upper = n-1;
504        //   while (true) {
505        //     if (upper < lower) throw new InvalidProgramException();
506        //     int i = lower + (upper - lower) / 2;
507        //     if (x[i] <= xx && xx < x[i + 1]) {
508        //       double h = xx - x[i];
509        //       double k = (y[i + 1] - y[i]) / (x[i + 1] - x[i]);
510        //       return h * k + y[i];
511        //     } else if (xx < x[i]) {
512        //       upper = i - 1;
513        //     } else {
514        //       lower = i + 1;
515        //     }
516        //   }
517        // }
518        // return 0.0;
519      }
520
521      public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
522        foreach(var x in dataset.GetDoubleValues(VariablesUsedForPrediction.First(), rows)) {
523          yield return GetEstimatedValue(x);
524        }
525      }
526
527      public override IDeepCloneable Clone(Cloner cloner) {
528        return new BartRegressionModel(this, cloner);
529      }
530    }
531
532  }
533}
Note: See TracBrowser for help on using the repository browser.