1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Concurrent;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using System.Threading.Tasks;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
37 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
40 | [Item("RBF (alglib)", "")]
|
---|
41 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 102)]
|
---|
42 | [StorableClass]
|
---|
43 | public sealed class RBF : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
44 | [StorableConstructor]
|
---|
45 | private RBF(bool deserializing) : base(deserializing) { }
|
---|
46 | [StorableHook(HookType.AfterDeserialization)]
|
---|
47 | private void AfterDeserialization() {
|
---|
48 | }
|
---|
49 |
|
---|
50 | private RBF(RBF original, Cloner cloner)
|
---|
51 | : base(original, cloner) {
|
---|
52 | }
|
---|
53 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
54 | return new RBF(this, cloner);
|
---|
55 | }
|
---|
56 |
|
---|
57 | public RBF()
|
---|
58 | : base() {
|
---|
59 | Problem = new RegressionProblem();
|
---|
60 | Parameters.Add(new ValueParameter<DoubleValue>("RBase", new DoubleValue(1.0)));
|
---|
61 | Parameters.Add(new ValueParameter<IntValue>("NLayers", new IntValue(3)));
|
---|
62 | Parameters.Add(new ValueParameter<DoubleValue>("LambdaNS", new DoubleValue(1.0)));
|
---|
63 | }
|
---|
64 |
|
---|
65 |
|
---|
66 | protected override void Run(CancellationToken cancellationToken) {
|
---|
67 | var scaling = CreateScaling(Problem.ProblemData.Dataset, Problem.ProblemData.TrainingIndices.ToArray(), Problem.ProblemData.AllowedInputVariables.ToArray());
|
---|
68 |
|
---|
69 | double[,] inputMatrix = ExtractData(Problem.ProblemData.Dataset, Problem.ProblemData.TrainingIndices, Problem.ProblemData.AllowedInputVariables.ToArray(), scaling);
|
---|
70 |
|
---|
71 | double[,] target = ExtractData(Problem.ProblemData.Dataset, Problem.ProblemData.TrainingIndices, new string[] { Problem.ProblemData.TargetVariable });
|
---|
72 | inputMatrix = inputMatrix.HorzCat(target);
|
---|
73 |
|
---|
74 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
75 | throw new NotSupportedException("Splines does not support NaN or infinity values in the input dataset.");
|
---|
76 |
|
---|
77 |
|
---|
78 | var inputVars = Problem.ProblemData.AllowedInputVariables.ToArray();
|
---|
79 | if (inputVars.Length > 3) throw new NotSupportedException();
|
---|
80 |
|
---|
81 | alglib.rbfmodel model;
|
---|
82 | alglib.rbfreport rep;
|
---|
83 |
|
---|
84 | alglib.rbfcreate(inputVars.Length, 1, out model);
|
---|
85 |
|
---|
86 | alglib.rbfsetzeroterm(model);
|
---|
87 | var rbase = ((DoubleValue)Parameters["RBase"].ActualValue).Value;
|
---|
88 | var nlayers = ((IntValue)Parameters["NLayers"].ActualValue).Value;
|
---|
89 | var lambdans = ((DoubleValue)Parameters["LambdaNS"].ActualValue).Value;
|
---|
90 | alglib.rbfsetalgohierarchical(model, rbase, nlayers, lambdans);
|
---|
91 | alglib.rbfsetpoints(model, inputMatrix);
|
---|
92 | alglib.rbfbuildmodel(model, out rep);
|
---|
93 |
|
---|
94 | Results.Add(new Result("TerminationType", new DoubleValue(rep.terminationtype)));
|
---|
95 | Results.Add(new Result("RMSE", new DoubleValue(rep.rmserror)));
|
---|
96 |
|
---|
97 | Results.Add(new Result("Solution", new RegressionSolution(new RBFModel(model, Problem.ProblemData.TargetVariable, inputVars, scaling),
|
---|
98 | (IRegressionProblemData)Problem.ProblemData.Clone())));
|
---|
99 | }
|
---|
100 |
|
---|
101 |
|
---|
102 | private static ITransformation<double>[] CreateScaling(IDataset dataset, int[] rows, IReadOnlyCollection<string> allowedInputVariables) {
|
---|
103 | var trans = new ITransformation<double>[allowedInputVariables.Count];
|
---|
104 | int i = 0;
|
---|
105 | foreach (var variable in allowedInputVariables) {
|
---|
106 | var lin = new LinearTransformation(allowedInputVariables);
|
---|
107 | var max = dataset.GetDoubleValues(variable, rows).Max();
|
---|
108 | var min = dataset.GetDoubleValues(variable, rows).Min();
|
---|
109 | lin.Multiplier = 1.0 / (max - min);
|
---|
110 | lin.Addend = -min / (max - min);
|
---|
111 | trans[i] = lin;
|
---|
112 | i++;
|
---|
113 | }
|
---|
114 | return trans;
|
---|
115 | }
|
---|
116 |
|
---|
117 | private static double[,] ExtractData(IDataset dataset, IEnumerable<int> rows, IReadOnlyCollection<string> allowedInputVariables, ITransformation<double>[] scaling = null) {
|
---|
118 | double[][] variables;
|
---|
119 | if (scaling != null) {
|
---|
120 | variables =
|
---|
121 | allowedInputVariables.Select((var, i) => scaling[i].Apply(dataset.GetDoubleValues(var, rows)).ToArray())
|
---|
122 | .ToArray();
|
---|
123 | } else {
|
---|
124 | variables =
|
---|
125 | allowedInputVariables.Select(var => dataset.GetDoubleValues(var, rows).ToArray()).ToArray();
|
---|
126 | }
|
---|
127 | int n = variables.First().Length;
|
---|
128 | var res = new double[n, variables.Length];
|
---|
129 | for (int r = 0; r < n; r++)
|
---|
130 | for (int c = 0; c < variables.Length; c++) {
|
---|
131 | res[r, c] = variables[c][r];
|
---|
132 | }
|
---|
133 | return res;
|
---|
134 | }
|
---|
135 | }
|
---|
136 |
|
---|
137 | }
|
---|
138 |
|
---|
139 |
|
---|
140 | // UNFINISHED
|
---|
141 | public class RBFModel : NamedItem, IRegressionModel {
|
---|
142 | private alglib.rbfmodel model;
|
---|
143 |
|
---|
144 | public string TargetVariable { get; set; }
|
---|
145 |
|
---|
146 | public IEnumerable<string> VariablesUsedForPrediction { get; private set; }
|
---|
147 | private ITransformation<double>[] scaling;
|
---|
148 |
|
---|
149 | public event EventHandler TargetVariableChanged;
|
---|
150 |
|
---|
151 | public RBFModel(RBFModel orig, Cloner cloner) : base(orig, cloner) {
|
---|
152 | this.TargetVariable = orig.TargetVariable;
|
---|
153 | this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
|
---|
154 | this.model = (alglib.rbfmodel)orig.model.make_copy();
|
---|
155 | this.scaling = orig.scaling.Select(s => cloner.Clone(s)).ToArray();
|
---|
156 | }
|
---|
157 | public RBFModel(alglib.rbfmodel model, string targetVar, string[] inputs, IEnumerable<ITransformation<double>> scaling) : base("RBFModel", "RBFModel") {
|
---|
158 | this.model = model;
|
---|
159 | this.TargetVariable = targetVar;
|
---|
160 | this.VariablesUsedForPrediction = inputs;
|
---|
161 | this.scaling = scaling.ToArray();
|
---|
162 | }
|
---|
163 |
|
---|
164 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
165 | return new RBFModel(this, cloner);
|
---|
166 | }
|
---|
167 |
|
---|
168 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
169 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
170 | }
|
---|
171 |
|
---|
172 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
173 | double[] x = new double[VariablesUsedForPrediction.Count()];
|
---|
174 | double[] y;
|
---|
175 | foreach (var r in rows) {
|
---|
176 | int c = 0;
|
---|
177 | foreach (var v in VariablesUsedForPrediction) {
|
---|
178 | x[c] = scaling[c].Apply(dataset.GetDoubleValue(v, r).ToEnumerable()).First(); // OUCH!
|
---|
179 | c++;
|
---|
180 | }
|
---|
181 | alglib.rbfcalc(model, x, out y);
|
---|
182 | yield return y[0];
|
---|
183 | }
|
---|
184 | }
|
---|
185 | }
|
---|