1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Concurrent;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using System.Threading.Tasks;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
37 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
40 | /// <summary>
|
---|
41 | /// Linear regression data analysis algorithm.
|
---|
42 | /// </summary>
|
---|
43 | [Item("Linear Regression Combinations (LR)", "Calculates all possible LR solutions.")]
|
---|
44 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 102)]
|
---|
45 | [StorableClass]
|
---|
46 | public sealed class LinearRegressionCombinations : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
47 | public IFixedValueParameter<IntValue> MaximumInputsParameter {
|
---|
48 | get { return (IFixedValueParameter<IntValue>)Parameters["Maximum Inputs"]; }
|
---|
49 | }
|
---|
50 | public int MaximumInputs {
|
---|
51 | get { return MaximumInputsParameter.Value.Value; }
|
---|
52 | set { MaximumInputsParameter.Value.Value = value; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public IFixedValueParameter<BoolValue> CreateSolutionParameter {
|
---|
56 | get { return (IFixedValueParameter<BoolValue>)Parameters["Create Solution"]; }
|
---|
57 | }
|
---|
58 | public bool CreateSolution {
|
---|
59 | get { return CreateSolutionParameter.Value.Value; }
|
---|
60 | set { CreateSolutionParameter.Value.Value = value; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public IFixedValueParameter<IntValue> MaximumSolutionsParameter {
|
---|
64 | get { return (IFixedValueParameter<IntValue>)Parameters["Maximum Solutions stored"]; }
|
---|
65 | }
|
---|
66 | public int MaximumSolutions {
|
---|
67 | get { return MaximumSolutionsParameter.Value.Value; }
|
---|
68 | set { MaximumSolutionsParameter.Value.Value = value; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | private IntValue CalculatedModelsResults {
|
---|
72 | get {
|
---|
73 | if (!Results.ContainsKey("Calculated Models")) Results.Add(new Result("Calculated Models", "The number of calculated linear models ", new IntValue(0)));
|
---|
74 | return (IntValue)Results["Calculated Models"].Value;
|
---|
75 | }
|
---|
76 | }
|
---|
77 | public int CalculatedModels {
|
---|
78 | get { return CalculatedModelsResults.Value; }
|
---|
79 | set { CalculatedModelsResults.Value = value; }
|
---|
80 | }
|
---|
81 |
|
---|
82 | private IntValue TotalModelsResult {
|
---|
83 | get {
|
---|
84 | if (!Results.ContainsKey("Total Models")) Results.Add(new Result("Total Models", "The total number of linear models to calculate", new IntValue(0)));
|
---|
85 | return (IntValue)Results["Total Models"].Value;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | public int TotalModels {
|
---|
89 | get { return TotalModelsResult.Value; }
|
---|
90 | set { TotalModelsResult.Value = value; }
|
---|
91 | }
|
---|
92 |
|
---|
93 | private IntValue CalculatedInputResults {
|
---|
94 | get {
|
---|
95 | if (!Results.ContainsKey("Calculated Inputs")) Results.Add(new Result("Calculated Inputs", "The maximum of already calculated input combinations.", new IntValue(0)));
|
---|
96 | return (IntValue)Results["Calculated Inputs"].Value;
|
---|
97 | }
|
---|
98 | }
|
---|
99 | public int CalculatedInputs {
|
---|
100 | get { return CalculatedInputResults.Value; }
|
---|
101 | set { CalculatedInputResults.Value = value; }
|
---|
102 | }
|
---|
103 |
|
---|
104 | [StorableConstructor]
|
---|
105 | private LinearRegressionCombinations(bool deserializing) : base(deserializing) { }
|
---|
106 | [StorableHook(HookType.AfterDeserialization)]
|
---|
107 | private void AfterDeserialization() {
|
---|
108 | RegisterEventHandlers();
|
---|
109 | }
|
---|
110 |
|
---|
111 | private LinearRegressionCombinations(LinearRegressionCombinations original, Cloner cloner)
|
---|
112 | : base(original, cloner) {
|
---|
113 | RegisterEventHandlers();
|
---|
114 | }
|
---|
115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
116 | return new LinearRegressionCombinations(this, cloner);
|
---|
117 | }
|
---|
118 |
|
---|
119 | public LinearRegressionCombinations()
|
---|
120 | : base() {
|
---|
121 | Parameters.Add(new FixedValueParameter<IntValue>("Maximum Inputs", "The maximum number of input variables used in the linear models.", new IntValue(1)));
|
---|
122 | Parameters.Add(new FixedValueParameter<IntValue>("Maximum Solutions stored", "The maximum number of solutions that are stored per number of inputs.", new IntValue(1000)));
|
---|
123 | Parameters.Add(new FixedValueParameter<BoolValue>("Create Solution", "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(false)));
|
---|
124 |
|
---|
125 | Problem = new RegressionProblem();
|
---|
126 | RegisterEventHandlers();
|
---|
127 | }
|
---|
128 |
|
---|
129 | private void RegisterEventHandlers() {
|
---|
130 | Problem.ProblemDataChanged += (o, e) => { MaximumInputs = Problem.ProblemData.InputVariables.CheckedItems.Count(); };
|
---|
131 | }
|
---|
132 | protected override void OnProblemChanged() {
|
---|
133 | base.OnProblemChanged();
|
---|
134 | MaximumInputs = Problem.ProblemData.InputVariables.CheckedItems.Count();
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 | private static long CalculateCombinations(int maximumInputs, int totalVariables) {
|
---|
139 | long combinations = 0;
|
---|
140 |
|
---|
141 | for (int i = 1; i <= maximumInputs; i++)
|
---|
142 | combinations += Common.EnumerableExtensions.BinomialCoefficient(totalVariables, i);
|
---|
143 | return combinations;
|
---|
144 | }
|
---|
145 |
|
---|
146 | protected override void Run(CancellationToken cancellationToken) {
|
---|
147 | double[,] inputMatrix = Problem.ProblemData.Dataset.ToArray(Problem.ProblemData.AllowedInputVariables.Concat(new string[] { Problem.ProblemData.TargetVariable }), Problem.ProblemData.TrainingIndices);
|
---|
148 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
149 | throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset.");
|
---|
150 |
|
---|
151 | var templateProblemData = (IRegressionProblemData)Problem.ProblemData.Clone();
|
---|
152 | foreach (var variable in templateProblemData.InputVariables)
|
---|
153 | templateProblemData.InputVariables.SetItemCheckedState(variable, false);
|
---|
154 |
|
---|
155 | var inputVariableNames = Problem.ProblemData.InputVariables.CheckedItems.Select(i => i.Value.Value).ToList();
|
---|
156 | var createSolution = CreateSolution;
|
---|
157 | var maximumInputs = MaximumInputs;
|
---|
158 | var maximumSolutions = MaximumSolutions;
|
---|
159 |
|
---|
160 | var storedRuns = new List<IRun>[maximumInputs];
|
---|
161 | var runs = new ConcurrentBag<IRun>();
|
---|
162 |
|
---|
163 | TotalModels = (int)CalculateCombinations(MaximumInputs, inputVariableNames.Count);
|
---|
164 | CalculatedModels = 0;
|
---|
165 | CalculatedInputs = 0;
|
---|
166 |
|
---|
167 | for (int inputs = 1; inputs <= MaximumInputs; inputs++) {
|
---|
168 | Parallel.ForEach(inputVariableNames.Combinations(inputs).ToList(), inputCombination => {
|
---|
169 | var problemData = new RegressionProblemData(templateProblemData.Dataset, inputCombination, templateProblemData.TargetVariable);
|
---|
170 | problemData.TrainingPartition.Start = templateProblemData.TrainingPartition.Start;
|
---|
171 | problemData.TrainingPartition.End = templateProblemData.TrainingPartition.End;
|
---|
172 | problemData.TestPartition.Start = templateProblemData.TestPartition.Start;
|
---|
173 | problemData.TestPartition.End = templateProblemData.TestPartition.End;
|
---|
174 |
|
---|
175 | double trainRmsError, testRmsError;
|
---|
176 | var solution = CreateLinearRegressionSolution(problemData, createSolution, out trainRmsError, out testRmsError);
|
---|
177 |
|
---|
178 | var run = new Run();
|
---|
179 | run.Name = string.Format("Run - Inputs {0}/{1}", inputCombination.Count(), MaximumInputs);
|
---|
180 | if (solution != null) run.Results.Add("Solution", solution);
|
---|
181 | run.Results.Add("RMSE train", new DoubleValue(trainRmsError));
|
---|
182 | run.Results.Add("RMSE test", new DoubleValue(testRmsError));
|
---|
183 | run.Results.Add("Inputs", new IntValue(inputCombination.Count()));
|
---|
184 | run.Results.Add("Input names", new StringValue(string.Join(" ", inputCombination)));
|
---|
185 | runs.Add(run);
|
---|
186 | });
|
---|
187 |
|
---|
188 | CalculatedModels += runs.Count;
|
---|
189 | CalculatedInputs = inputs;
|
---|
190 | storedRuns[inputs - 1] = runs.OrderBy(r => ((DoubleValue)r.Results["RMSE test"]).Value).Take(maximumSolutions).ToList();
|
---|
191 | runs = new ConcurrentBag<IRun>();
|
---|
192 |
|
---|
193 | if (cancellationToken.IsCancellationRequested) {
|
---|
194 | Results.Add(new Result("Runs", new RunCollection(storedRuns.SelectMany(r => r))));
|
---|
195 | cancellationToken.ThrowIfCancellationRequested();
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 |
|
---|
200 | Results.Add(new Result("Runs", new RunCollection(storedRuns.SelectMany(r => r))));
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | public static ISymbolicRegressionSolution CreateLinearRegressionSolution(IRegressionProblemData problemData, bool buildSolution, out double trainRmsError, out double testRmsError) {
|
---|
205 | var dataset = problemData.Dataset;
|
---|
206 | string targetVariable = problemData.TargetVariable;
|
---|
207 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
|
---|
208 |
|
---|
209 | double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), problemData.TrainingIndices);
|
---|
210 | double[,] testMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), problemData.TestIndices);
|
---|
211 |
|
---|
212 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
213 | alglib.lrreport ar = new alglib.lrreport();
|
---|
214 | int nRows = inputMatrix.GetLength(0);
|
---|
215 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
216 | double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
|
---|
217 |
|
---|
218 | int retVal = 1;
|
---|
219 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
220 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
|
---|
221 | trainRmsError = ar.rmserror;
|
---|
222 |
|
---|
223 | alglib.lrunpack(lm, out coefficients, out nFeatures);
|
---|
224 | testRmsError = alglib.lrrmserror(lm, testMatrix, testMatrix.GetLength(0));
|
---|
225 |
|
---|
226 | if (!buildSolution) return null;
|
---|
227 |
|
---|
228 | ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
|
---|
229 | ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
|
---|
230 | tree.Root.AddSubtree(startNode);
|
---|
231 | ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
|
---|
232 | startNode.AddSubtree(addition);
|
---|
233 |
|
---|
234 | int col = 0;
|
---|
235 | foreach (string column in allowedInputVariables) {
|
---|
236 | VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
|
---|
237 | vNode.VariableName = column;
|
---|
238 | vNode.Weight = coefficients[col];
|
---|
239 | addition.AddSubtree(vNode);
|
---|
240 | col++;
|
---|
241 | }
|
---|
242 |
|
---|
243 | ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
|
---|
244 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
245 | addition.AddSubtree(cNode);
|
---|
246 |
|
---|
247 | SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), problemData);
|
---|
248 | solution.Model.Name = "Linear Regression Model";
|
---|
249 | solution.Name = "Linear Regression Solution";
|
---|
250 | return solution;
|
---|
251 | }
|
---|
252 | }
|
---|
253 | }
|
---|