1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using MathNet.Numerics.Data.Matlab;
|
---|
30 | using MathNet.Numerics.LinearAlgebra;
|
---|
31 | using MathNet.Numerics.LinearAlgebra.Double;
|
---|
32 | using MathNet.Numerics.LinearAlgebra.Factorization;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
35 | // TODO: scale y
|
---|
36 | // TODO: remove dependence of scaling and export scaling parameters
|
---|
37 | // TODO: export / import all relevant data
|
---|
38 | [StorableClass]
|
---|
39 | [Item("GaussianProcessModelMKL", "Represents a Gaussian process posterior.")]
|
---|
40 | public sealed class GaussianProcessModelMKL : RegressionModel, IGaussianProcessModel {
|
---|
41 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
42 | get { return allowedInputVariables; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | [Storable]
|
---|
46 | private double negativeLogLikelihood;
|
---|
47 | public double NegativeLogLikelihood {
|
---|
48 | get { return negativeLogLikelihood; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | [Storable]
|
---|
52 | private double negativeLooPredictiveProbability;
|
---|
53 | public double NegativeLooPredictiveProbability {
|
---|
54 | get { return negativeLooPredictiveProbability; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | [Storable]
|
---|
58 | private double[] hyperparameterGradients;
|
---|
59 | public double[] HyperparameterGradients {
|
---|
60 | get {
|
---|
61 | var copy = new double[hyperparameterGradients.Length];
|
---|
62 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
63 | return copy;
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | [Storable]
|
---|
68 | private ICovarianceFunction covarianceFunction;
|
---|
69 | public ICovarianceFunction CovarianceFunction {
|
---|
70 | get { return covarianceFunction; }
|
---|
71 | }
|
---|
72 | [Storable]
|
---|
73 | private IMeanFunction meanFunction;
|
---|
74 | public IMeanFunction MeanFunction {
|
---|
75 | get { return meanFunction; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | [Storable]
|
---|
79 | private string[] allowedInputVariables;
|
---|
80 | public string[] AllowedInputVariables {
|
---|
81 | get { return allowedInputVariables; }
|
---|
82 | }
|
---|
83 |
|
---|
84 | [Storable]
|
---|
85 | private Vector<double> alpha;
|
---|
86 | [Storable]
|
---|
87 | private double sqrSigmaNoise;
|
---|
88 | public double SigmaNoise {
|
---|
89 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
90 | }
|
---|
91 |
|
---|
92 | [Storable]
|
---|
93 | private double[] meanParameter;
|
---|
94 | [Storable]
|
---|
95 | private double[] covarianceParameter;
|
---|
96 |
|
---|
97 | private Matrix<double> l;
|
---|
98 | private double[,] x; // scaled training dataset, used to be storable in previous versions (is calculated lazily now)
|
---|
99 |
|
---|
100 |
|
---|
101 | [Storable]
|
---|
102 | private IDataset trainingDataset; // it is better to store the original training dataset completely because this is more efficient in persistence
|
---|
103 | [Storable]
|
---|
104 | private int[] trainingRows;
|
---|
105 |
|
---|
106 | [Storable]
|
---|
107 | private Scaling inputScaling;
|
---|
108 |
|
---|
109 |
|
---|
110 | [StorableConstructor]
|
---|
111 | private GaussianProcessModelMKL(bool deserializing) : base(deserializing) { }
|
---|
112 | private GaussianProcessModelMKL(GaussianProcessModelMKL original, Cloner cloner)
|
---|
113 | : base(original, cloner) {
|
---|
114 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
115 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
116 | if (original.inputScaling != null)
|
---|
117 | this.inputScaling = cloner.Clone(original.inputScaling);
|
---|
118 | this.trainingDataset = cloner.Clone(original.trainingDataset);
|
---|
119 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
120 | this.negativeLooPredictiveProbability = original.negativeLooPredictiveProbability;
|
---|
121 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
122 | if (original.meanParameter != null) {
|
---|
123 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
124 | }
|
---|
125 | if (original.covarianceParameter != null) {
|
---|
126 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
127 | }
|
---|
128 |
|
---|
129 | // shallow copies of arrays because they cannot be modified
|
---|
130 | this.trainingRows = original.trainingRows;
|
---|
131 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
132 | this.alpha = original.alpha;
|
---|
133 | this.l = original.l;
|
---|
134 | this.x = original.x;
|
---|
135 | }
|
---|
136 | public GaussianProcessModelMKL(IDataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
137 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction,
|
---|
138 | bool scaleInputs = true)
|
---|
139 | : base(targetVariable) {
|
---|
140 | // MathNet.Numerics.Control.UseNativeMKL();
|
---|
141 | // MathNet.Numerics.Control.UseSingleThread();
|
---|
142 | // this.Description += Control.LinearAlgebraProvider.ToString();
|
---|
143 | this.name = ItemName;
|
---|
144 | this.description = ItemDescription;
|
---|
145 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
146 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
147 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
148 |
|
---|
149 |
|
---|
150 | int nVariables = this.allowedInputVariables.Length;
|
---|
151 | meanParameter = hyp
|
---|
152 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
153 | .ToArray();
|
---|
154 |
|
---|
155 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
156 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
157 | .ToArray();
|
---|
158 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
159 | CalculateModel(ds, rows, scaleInputs);
|
---|
160 | }
|
---|
161 |
|
---|
162 | private void CalculateModel(IDataset ds, IEnumerable<int> rows, bool scaleInputs = true) {
|
---|
163 | this.trainingDataset = (IDataset)ds.Clone();
|
---|
164 | this.trainingRows = rows.ToArray();
|
---|
165 | this.inputScaling = scaleInputs ? new Scaling(ds, allowedInputVariables, rows) : null;
|
---|
166 |
|
---|
167 | x = GetData(ds, this.allowedInputVariables, this.trainingRows, this.inputScaling);
|
---|
168 |
|
---|
169 | IEnumerable<double> y;
|
---|
170 | y = ds.GetDoubleValues(TargetVariable, rows);
|
---|
171 |
|
---|
172 | int n = x.GetLength(0);
|
---|
173 |
|
---|
174 | var columns = Enumerable.Range(0, x.GetLength(1)).ToArray();
|
---|
175 | // calculate cholesky decomposed (lower triangular) covariance matrix
|
---|
176 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns);
|
---|
177 | var chol = CalculateL(x, cov, sqrSigmaNoise);
|
---|
178 | this.l = chol.Factor;
|
---|
179 |
|
---|
180 | // calculate mean
|
---|
181 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, columns);
|
---|
182 | double[] m = Enumerable.Range(0, x.GetLength(0))
|
---|
183 | .Select(r => mean.Mean(x, r))
|
---|
184 | .ToArray();
|
---|
185 |
|
---|
186 |
|
---|
187 | // solve for alpha
|
---|
188 | Vector<double> ym = DenseVector.OfEnumerable(y.Zip(m, (a, b) => a - b));
|
---|
189 |
|
---|
190 |
|
---|
191 | alpha = chol.Solve(ym);
|
---|
192 | alpha = alpha * 1.0 / sqrSigmaNoise;
|
---|
193 |
|
---|
194 | // calculate sum of diagonal elements for likelihood
|
---|
195 | double diagSum = chol.DeterminantLn;
|
---|
196 | negativeLogLikelihood = 0.5 * ym.DotProduct(alpha) + 0.5 * diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
|
---|
197 |
|
---|
198 | // derivatives
|
---|
199 | int nAllowedVariables = x.GetLength(1);
|
---|
200 |
|
---|
201 | Matrix<double> lCopy;
|
---|
202 |
|
---|
203 | lCopy = chol.Solve(DenseMatrix.CreateIdentity(n));
|
---|
204 |
|
---|
205 | // LOOCV log predictive probability (GPML page 116 and 117)
|
---|
206 | var sumLoo = 0.0;
|
---|
207 | var ki = new DenseVector(n);
|
---|
208 | for (int i = 0; i < n; i++) {
|
---|
209 | for (int j = 0; j < n; j++) ki[j] = cov.Covariance(x, i, j);
|
---|
210 | var yi = ki.DotProduct(alpha);
|
---|
211 | var yi_loo = yi - alpha[i] / lCopy[i, i] / sqrSigmaNoise;
|
---|
212 | var s2_loo = sqrSigmaNoise / lCopy[i, i];
|
---|
213 | var err = ym[i] - yi_loo;
|
---|
214 | var nll_loo = Math.Log(s2_loo) + err * err / s2_loo;
|
---|
215 | sumLoo += nll_loo;
|
---|
216 | }
|
---|
217 | sumLoo += n * Math.Log(2 * Math.PI);
|
---|
218 | negativeLooPredictiveProbability = 0.5 * sumLoo;
|
---|
219 |
|
---|
220 | for (int i = 0; i < n; i++) {
|
---|
221 | for (int j = 0; j <= i; j++)
|
---|
222 | lCopy[i, j] = lCopy[i, j] / sqrSigmaNoise - alpha[i] * alpha[j];
|
---|
223 | }
|
---|
224 |
|
---|
225 | double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => lCopy[i, i]).Sum();
|
---|
226 |
|
---|
227 | double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
228 | for (int k = 0; k < meanGradients.Length; k++) {
|
---|
229 | var meanGrad = new DenseVector(alpha.Count);
|
---|
230 | for (int g = 0; g < meanGrad.Count; g++)
|
---|
231 | meanGrad[g] = mean.Gradient(x, g, k);
|
---|
232 |
|
---|
233 | meanGradients[k] = -meanGrad.DotProduct(alpha);
|
---|
234 | }
|
---|
235 |
|
---|
236 | double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
237 | if (covGradients.Length > 0) {
|
---|
238 | for (int i = 0; i < n; i++) {
|
---|
239 | for (int j = 0; j < i; j++) {
|
---|
240 | var g = cov.CovarianceGradient(x, i, j);
|
---|
241 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
242 | covGradients[k] += lCopy[i, j] * g[k];
|
---|
243 | }
|
---|
244 | }
|
---|
245 |
|
---|
246 | var gDiag = cov.CovarianceGradient(x, i, i);
|
---|
247 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
248 | // diag
|
---|
249 | covGradients[k] += 0.5 * lCopy[i, i] * gDiag[k];
|
---|
250 | }
|
---|
251 | }
|
---|
252 | }
|
---|
253 |
|
---|
254 | hyperparameterGradients =
|
---|
255 | meanGradients
|
---|
256 | .Concat(covGradients)
|
---|
257 | .Concat(new double[] { noiseGradient }).ToArray();
|
---|
258 |
|
---|
259 | }
|
---|
260 |
|
---|
261 | private static double[,] GetData(IDataset ds, IEnumerable<string> allowedInputs, IEnumerable<int> rows, Scaling scaling) {
|
---|
262 | if (scaling != null) {
|
---|
263 | // BackwardsCompatibility3.3
|
---|
264 | #region Backwards compatible code, remove with 3.4
|
---|
265 | // TODO: completely remove Scaling class
|
---|
266 | List<string> variablesList = allowedInputs.ToList();
|
---|
267 | List<int> rowsList = rows.ToList();
|
---|
268 |
|
---|
269 | double[,] matrix = new double[rowsList.Count, variablesList.Count];
|
---|
270 |
|
---|
271 | int col = 0;
|
---|
272 | foreach (string column in variablesList) {
|
---|
273 | var values = scaling.GetScaledValues(ds, column, rowsList);
|
---|
274 | int row = 0;
|
---|
275 | foreach (var value in values) {
|
---|
276 | matrix[row, col] = value;
|
---|
277 | row++;
|
---|
278 | }
|
---|
279 | col++;
|
---|
280 | }
|
---|
281 | return matrix;
|
---|
282 | #endregion
|
---|
283 | } else {
|
---|
284 | return ds.ToArray(allowedInputs, rows);
|
---|
285 | }
|
---|
286 | }
|
---|
287 |
|
---|
288 | private static Cholesky<double> CalculateL(double[,] x, ParameterizedCovarianceFunction cov, double sqrSigmaNoise) {
|
---|
289 | int n = x.GetLength(0);
|
---|
290 | var l = new DenseMatrix(n, n);
|
---|
291 |
|
---|
292 | // calculate covariances
|
---|
293 | for (int i = 0; i < n; i++) {
|
---|
294 | for (int j = i; j < n; j++) {
|
---|
295 | l[j, i] = l[i, j] = cov.Covariance(x, i, j) / sqrSigmaNoise;
|
---|
296 | if (j == i) l[j, i] += 1.0;
|
---|
297 | }
|
---|
298 | }
|
---|
299 |
|
---|
300 | // cholesky decomposition
|
---|
301 | return l.Cholesky();
|
---|
302 | }
|
---|
303 |
|
---|
304 |
|
---|
305 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
306 | return new GaussianProcessModelMKL(this, cloner);
|
---|
307 | }
|
---|
308 |
|
---|
309 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
310 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
311 | public void FixParameters() {
|
---|
312 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
313 | meanFunction.SetParameter(meanParameter);
|
---|
314 | covarianceParameter = new double[0];
|
---|
315 | meanParameter = new double[0];
|
---|
316 | }
|
---|
317 |
|
---|
318 | #region IRegressionModel Members
|
---|
319 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
320 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
321 | }
|
---|
322 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
323 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
324 | }
|
---|
325 | #endregion
|
---|
326 |
|
---|
327 |
|
---|
328 | private IEnumerable<double> GetEstimatedValuesHelper(IDataset dataset, IEnumerable<int> rows) {
|
---|
329 | if (x == null) {
|
---|
330 | x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling);
|
---|
331 | }
|
---|
332 | int n = x.GetLength(0);
|
---|
333 |
|
---|
334 | double[,] newX = GetData(dataset, allowedInputVariables, rows, inputScaling);
|
---|
335 | int newN = newX.GetLength(0);
|
---|
336 |
|
---|
337 | var columns = Enumerable.Range(0, newX.GetLength(1)).ToArray();
|
---|
338 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, columns);
|
---|
339 | var ms = Enumerable.Range(0, newX.GetLength(0))
|
---|
340 | .Select(r => mean.Mean(newX, r))
|
---|
341 | .ToArray();
|
---|
342 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns);
|
---|
343 | for (int i = 0; i < newN; i++) {
|
---|
344 | var Ks = new DenseVector(n);
|
---|
345 | for (int j = 0; j < n; j++) {
|
---|
346 | Ks[j] = cov.CrossCovariance(x, newX, j, i);
|
---|
347 | }
|
---|
348 | yield return ms[i] + Ks.DotProduct(alpha);
|
---|
349 | }
|
---|
350 | }
|
---|
351 |
|
---|
352 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
353 | if (x == null) {
|
---|
354 | x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling);
|
---|
355 | }
|
---|
356 | int n = x.GetLength(0);
|
---|
357 |
|
---|
358 | var newX = GetData(dataset, allowedInputVariables, rows, inputScaling);
|
---|
359 | int newN = newX.GetLength(0);
|
---|
360 | if (newN == 0) return Enumerable.Empty<double>();
|
---|
361 |
|
---|
362 | var kss = new DenseVector(newN);
|
---|
363 | Matrix<double> sWKs = new DenseMatrix(n, newN);
|
---|
364 | var columns = Enumerable.Range(0, newX.GetLength(1)).ToArray();
|
---|
365 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns);
|
---|
366 |
|
---|
367 | if (l == null) {
|
---|
368 | l = CalculateL(x, cov, sqrSigmaNoise).Factor;
|
---|
369 | }
|
---|
370 |
|
---|
371 | // for stddev
|
---|
372 | for (int i = 0; i < newN; i++)
|
---|
373 | kss[i] = cov.Covariance(newX, i, i);
|
---|
374 |
|
---|
375 | for (int i = 0; i < newN; i++) {
|
---|
376 | for (int j = 0; j < n; j++) {
|
---|
377 | sWKs[j, i] = cov.CrossCovariance(x, newX, j, i) / Math.Sqrt(sqrSigmaNoise);
|
---|
378 | }
|
---|
379 | }
|
---|
380 |
|
---|
381 | sWKs = l.Solve(sWKs);
|
---|
382 |
|
---|
383 | for (int i = 0; i < newN; i++) {
|
---|
384 | var col = sWKs.Column(i);
|
---|
385 | var sumV = col.DotProduct(col);
|
---|
386 | kss[i] += sqrSigmaNoise; // kss is V(f), add noise variance of predictive distibution to get V(y)
|
---|
387 | kss[i] -= sumV;
|
---|
388 | if (kss[i] < 0) kss[i] = 0;
|
---|
389 | }
|
---|
390 | return kss;
|
---|
391 | }
|
---|
392 |
|
---|
393 |
|
---|
394 | public void Export(string fileName) {
|
---|
395 | MatlabWriter.Write<double>(fileName,
|
---|
396 | new Matrix<double>[] { DenseMatrix.OfArray(x), l, alpha.ToRowMatrix()},
|
---|
397 | new string[] { "x", "l", "alpha", }
|
---|
398 | );
|
---|
399 | }
|
---|
400 | }
|
---|
401 | }
|
---|