1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.Instances;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.Scheduling.CFSAP {
|
---|
36 | [Item("Cyclic flow shop with two machines and a single nest (CFSAP) sequencing problem", "Non-permutational cyclic flow shop scheduling problem with a single nest of two machine from W. Bozejko.")]
|
---|
37 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
|
---|
38 | [StorableClass]
|
---|
39 | public class CFSAPSequenceOnly : SingleObjectiveBasicProblem<PermutationEncoding>, IProblemInstanceConsumer<CFSAPData> {
|
---|
40 | public override bool Maximization { get { return false; } }
|
---|
41 |
|
---|
42 | public IValueParameter<IntMatrix> ProcessingTimesParameter {
|
---|
43 | get { return (IValueParameter<IntMatrix>)Parameters["ProcessingTimes"]; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | public IntMatrix ProcessingTimes {
|
---|
47 | get { return ProcessingTimesParameter.Value; }
|
---|
48 | set { ProcessingTimesParameter.Value = value; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public IValueParameter<ItemList<IntMatrix>> SetupTimesParameter {
|
---|
52 | get { return (IValueParameter<ItemList<IntMatrix>>)Parameters["SetupTimes"]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public ItemList<IntMatrix> SetupTimes {
|
---|
56 | get { return SetupTimesParameter.Value; }
|
---|
57 | set { SetupTimesParameter.Value = value; }
|
---|
58 | }
|
---|
59 |
|
---|
60 | [StorableConstructor]
|
---|
61 | protected CFSAPSequenceOnly(bool deserializing) : base(deserializing) {}
|
---|
62 | protected CFSAPSequenceOnly(CFSAPSequenceOnly original, Cloner cloner)
|
---|
63 | : base(original, cloner) {}
|
---|
64 | public CFSAPSequenceOnly() {
|
---|
65 | Parameters.Add(new ValueParameter<IntMatrix>("ProcessingTimes", "The processing times of each job for each machine nest."));
|
---|
66 | Parameters.Add(new ValueParameter<ItemList<IntMatrix>>("SetupTimes", "The sequence dependent set up times among all jobs for each machine nest."));
|
---|
67 |
|
---|
68 | ProcessingTimesParameter.Value = new IntMatrix(new int[,] {
|
---|
69 | { 5, 4, 3, 2, 1 },
|
---|
70 | { 1, 2, 3, 4, 5 }
|
---|
71 | });
|
---|
72 |
|
---|
73 | SetupTimesParameter.Value = new ItemList<IntMatrix>(2);
|
---|
74 | SetupTimesParameter.Value.Add(new IntMatrix(new int[,] {
|
---|
75 | { 3, 4, 5, 4, 3 },
|
---|
76 | { 3, 4, 5, 4, 3 },
|
---|
77 | { 3, 4, 5, 4, 3 },
|
---|
78 | { 3, 4, 5, 4, 3 },
|
---|
79 | { 3, 4, 5, 4, 3 },
|
---|
80 | }));
|
---|
81 | SetupTimesParameter.Value.Add(new IntMatrix(new int[,] {
|
---|
82 | { 5, 4, 3, 4, 5 },
|
---|
83 | { 5, 4, 3, 4, 5 },
|
---|
84 | { 5, 4, 3, 4, 5 },
|
---|
85 | { 5, 4, 3, 4, 5 },
|
---|
86 | { 5, 4, 3, 4, 5 },
|
---|
87 | }));
|
---|
88 |
|
---|
89 | Encoding.Length = 5;
|
---|
90 |
|
---|
91 | Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator);
|
---|
92 | Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator);
|
---|
93 | Operators.RemoveAll(x => x is SingleObjectiveMoveMaker);
|
---|
94 | }
|
---|
95 |
|
---|
96 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
97 | return new CFSAPSequenceOnly(this, cloner);
|
---|
98 | }
|
---|
99 |
|
---|
100 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
101 | var order = individual.Permutation(Encoding.Name);
|
---|
102 | int T = EvaluateSequence(order);
|
---|
103 | return T;
|
---|
104 | }
|
---|
105 |
|
---|
106 | public int EvaluateSequence(Permutation order) {
|
---|
107 | var N = order.Length;
|
---|
108 | var processingTimes = ProcessingTimesParameter.Value;
|
---|
109 | var setupTimes = SetupTimesParameter.Value;
|
---|
110 |
|
---|
111 | int[,,] weights = new int[2, 2 * N, 2 * N];
|
---|
112 | int[,] graph = new int[2, N];
|
---|
113 | int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation
|
---|
114 | int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation
|
---|
115 |
|
---|
116 | //Calculate weights in the graph
|
---|
117 | for (int S = 0; S < N; S++) { //Starting point of the arc
|
---|
118 | for (int sM = 0; sM < 2; sM++) { //Starting point machine
|
---|
119 | int eM = sM == 0 ? 1 : 0;
|
---|
120 | weights[sM, S, S + 1] = 0;
|
---|
121 |
|
---|
122 | for (int E = S + 2; E < S + N; E++)
|
---|
123 | weights[sM, S, E] =
|
---|
124 | weights[sM, S, E - 1] +
|
---|
125 | processingTimes[eM, order[(E - 1) % N]] +
|
---|
126 | setupTimes[eM][order[(E - 1) % N], order[E % N]];
|
---|
127 |
|
---|
128 | for (int E = S + 1; E < S + N; E++)
|
---|
129 | weights[sM, S, E] += (
|
---|
130 | processingTimes[sM, order[S % N]] +
|
---|
131 | setupTimes[sM][order[S % N], order[(E + 1) % N]]
|
---|
132 | );
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | //Determine the shortest path in the graph
|
---|
137 | int T = int.MaxValue / 2;
|
---|
138 | for (int S = 0; S < N - 1; S++) //Start node in graph O(N)
|
---|
139 | for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1)
|
---|
140 | graph[SM, S] = 0;
|
---|
141 | graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2;
|
---|
142 | prevPath[SM, 0] = -1;
|
---|
143 | for (int E = S + 1; E < N; E++) //Currently calculated node O(N)
|
---|
144 | for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1)
|
---|
145 | graph[EM, E] = int.MaxValue / 2;
|
---|
146 | for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N)
|
---|
147 | int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E];
|
---|
148 | if (newWeight < graph[EM, E]) {
|
---|
149 | graph[EM, E] = newWeight;
|
---|
150 | prevPath[EM, E] = EC;
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | int EP = S + N; //End point.
|
---|
156 | int newT = int.MaxValue / 2;
|
---|
157 | for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N)
|
---|
158 | int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP];
|
---|
159 | if (newWeight < newT) {
|
---|
160 | newT = newWeight;
|
---|
161 | prevPath[SM, S] = EC;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | if (newT < T) {
|
---|
166 | T = newT;
|
---|
167 | optimalAssignment = MakeAssignement(S, SM, prevPath, order);
|
---|
168 | }
|
---|
169 | }
|
---|
170 |
|
---|
171 | //Omitted solutions
|
---|
172 | for (int machine = 0; machine < 2; machine++) {
|
---|
173 | int[] assignment = Enumerable.Repeat(machine, N).ToArray();
|
---|
174 | int newT = CFSAP.EvaluateAssignement(order, assignment, processingTimes, setupTimes);
|
---|
175 | if (newT < T) { //New best solution has been found
|
---|
176 | T = newT;
|
---|
177 | optimalAssignment = assignment;
|
---|
178 | }
|
---|
179 | }
|
---|
180 |
|
---|
181 | return T;
|
---|
182 | }
|
---|
183 |
|
---|
184 | private int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) {
|
---|
185 | var N = order.Length;
|
---|
186 | int[] assignment = Enumerable.Repeat(-1, N).ToArray();
|
---|
187 | var inverseOrder = new int[N];
|
---|
188 |
|
---|
189 | for (int i = 0; i < N; i++)
|
---|
190 | inverseOrder[order[i]] = i;
|
---|
191 |
|
---|
192 | int end = start + N;
|
---|
193 |
|
---|
194 | int currMach = startMach;
|
---|
195 | int currNode = start;
|
---|
196 | while (true) {
|
---|
197 | assignment[inverseOrder[currNode]] = currMach;
|
---|
198 | currNode = prevPath[currMach, currNode];
|
---|
199 | currMach = currMach == 0 ? 1 : 0;
|
---|
200 | if (currNode == start)
|
---|
201 | break;
|
---|
202 | }
|
---|
203 |
|
---|
204 | currMach = startMach;
|
---|
205 | for (int i = 0; i < N; i++) {
|
---|
206 | if (assignment[inverseOrder[i]] != -1)
|
---|
207 | currMach = currMach == 0 ? 1 : 0;
|
---|
208 | else
|
---|
209 | assignment[inverseOrder[i]] = currMach;
|
---|
210 | }
|
---|
211 |
|
---|
212 | return assignment;
|
---|
213 | }
|
---|
214 |
|
---|
215 | public void UpdateEncoding() {
|
---|
216 | Encoding.Length = ProcessingTimes.Columns;
|
---|
217 | }
|
---|
218 |
|
---|
219 | /// <summary>
|
---|
220 | /// Imports the first nest (index 0) given in the CFSAPData.
|
---|
221 | /// This is the same as calling Load(data, 0).
|
---|
222 | /// </summary>
|
---|
223 | /// <param name="data">The data of all nests.</param>
|
---|
224 | public void Load(CFSAPData data) {
|
---|
225 | Load(data, 0);
|
---|
226 | }
|
---|
227 |
|
---|
228 | /// <summary>
|
---|
229 | /// Imports a specific nest given in the CFSAPData.
|
---|
230 | /// </summary>
|
---|
231 | /// <param name="data">The data of all nests.</param>
|
---|
232 | /// <param name="nest">The zero-based index of the nest that should be imported.</param>
|
---|
233 | public void Load(CFSAPData data, int nest) {
|
---|
234 | if (data.Machines[nest] != 2) throw new ArgumentException("Currently only two machines per nest are supported.");
|
---|
235 | if (nest < 0 || nest >= data.Nests) throw new ArgumentException("Nest must be a zero-based index.");
|
---|
236 | var pr = new int[data.Machines[nest], data.Jobs];
|
---|
237 | for (var i = 0; i < data.Machines[nest]; i++)
|
---|
238 | for (var j = 0; j < data.Jobs; j++)
|
---|
239 | pr[i, j] = data.ProcessingTimes[nest][i][j];
|
---|
240 | ProcessingTimesParameter.Value = new IntMatrix(pr);
|
---|
241 | var setups = new ItemList<IntMatrix>(data.Machines[nest]);
|
---|
242 | for (var m = 0; m < data.SetupTimes[nest].GetLength(0); m++) {
|
---|
243 | var setupTimes = new int[data.Jobs, data.Jobs];
|
---|
244 | for (var i = 0; i < data.Jobs; i++)
|
---|
245 | for (var j = 0; j < data.Jobs; j++)
|
---|
246 | setupTimes[i, j] = data.SetupTimes[nest][m][i][j];
|
---|
247 | setups.Add(new IntMatrix(setupTimes));
|
---|
248 | }
|
---|
249 | SetupTimesParameter.Value = setups;
|
---|
250 | UpdateEncoding();
|
---|
251 | Name = data.Name + "-nest" + nest;
|
---|
252 | Description = data.Description;
|
---|
253 | if (data.BestKnownCycleTime.HasValue)
|
---|
254 | BestKnownQuality = data.BestKnownCycleTime.Value;
|
---|
255 | else BestKnownQualityParameter.Value = null;
|
---|
256 | }
|
---|
257 | }
|
---|
258 | }
|
---|