1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HEAL.Attic;
|
---|
25 | using HeuristicLab.Analysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.EGO {
|
---|
35 | [Item("VariableVariabilityAnalyzer", "Analyzes the correlation between perdictions and actual fitness values")]
|
---|
36 | [StorableType("3bc82bbb-e9dd-4a50-8241-cfcf230be8c9")]
|
---|
37 | public class VariableVariabilityAnalyzer : SingleSuccessorOperator, IAnalyzer, IResultsOperator {
|
---|
38 | public override bool CanChangeName => true;
|
---|
39 | public bool EnabledByDefault => false;
|
---|
40 |
|
---|
41 | public ILookupParameter<ModifiableDataset> DatasetParameter => (ILookupParameter<ModifiableDataset>)Parameters["Dataset"];
|
---|
42 | public ILookupParameter<ResultCollection> ResultsParameter => (ILookupParameter<ResultCollection>)Parameters["Results"];
|
---|
43 | public ILookupParameter<IntValue> InitialEvaluationsParameter => (ILookupParameter<IntValue>)Parameters["Initial Evaluations"];
|
---|
44 | public IFixedValueParameter<IntValue> LookBackSizeParameter => (IFixedValueParameter<IntValue>)Parameters["LookBackSize"];
|
---|
45 |
|
---|
46 | private const string NormalizedPlotName = "Normalized Variable Variance";
|
---|
47 | private const string PlotName = "Variable Variance";
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected VariableVariabilityAnalyzer(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
51 | protected VariableVariabilityAnalyzer(VariableVariabilityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
52 | public VariableVariabilityAnalyzer() {
|
---|
53 | Parameters.Add(new FixedValueParameter<IntValue>("LookBackSize", new IntValue(10)));
|
---|
54 | Parameters.Add(new LookupParameter<IntValue>("Initial Evaluations"));
|
---|
55 | Parameters.Add(new LookupParameter<ModifiableDataset>("Dataset"));
|
---|
56 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection to store the results in."));
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
60 | return new VariableVariabilityAnalyzer(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public sealed override IOperation Apply() {
|
---|
64 | var dataset = DatasetParameter.ActualValue;
|
---|
65 | var results = ResultsParameter.ActualValue;
|
---|
66 | var initialEvals = InitialEvaluationsParameter.ActualValue.Value;
|
---|
67 | var lbsize = LookBackSizeParameter.Value.Value;
|
---|
68 |
|
---|
69 | var normPlot = CreateScatterPlotResult(results, NormalizedPlotName);
|
---|
70 | var plot = CreateScatterPlotResult(results, PlotName);
|
---|
71 | foreach (var s in dataset.VariableNames) {
|
---|
72 | if (!normPlot.Rows.ContainsKey(s)) normPlot.Rows.Add(new DataRow(s));
|
---|
73 | if (!plot.Rows.ContainsKey(s)) plot.Rows.Add(new DataRow(s));
|
---|
74 |
|
---|
75 | if (dataset.Rows < lbsize) continue;
|
---|
76 | var wd = dataset.GetDoubleValues(s, Enumerable.Range(dataset.Rows - lbsize, lbsize)).StandardDeviation();
|
---|
77 | plot.Rows[s].Values.Add(wd);
|
---|
78 |
|
---|
79 | if (dataset.Rows < Math.Max(initialEvals, lbsize)) continue;
|
---|
80 | var sd = dataset.GetDoubleValues(s, Enumerable.Range(0, initialEvals)).StandardDeviation();
|
---|
81 | normPlot.Rows[s].Values.Add(wd / sd);
|
---|
82 | }
|
---|
83 | return base.Apply();
|
---|
84 | }
|
---|
85 |
|
---|
86 | private static DataTable CreateScatterPlotResult(ResultCollection results, string plotname) {
|
---|
87 | DataTable plot;
|
---|
88 | if (!results.ContainsKey(plotname)) {
|
---|
89 | plot = new DataTable(plotname) {
|
---|
90 | VisualProperties = {
|
---|
91 | XAxisTitle = "Iteration",
|
---|
92 | YAxisTitle = plotname.Equals(NormalizedPlotName)? "Normalized Variance (Variance of last Samples)/(Variance of Initial Samples)" : "Standard deviation of last samples"
|
---|
93 | }
|
---|
94 | };
|
---|
95 | results.Add(new Result(plotname, plot));
|
---|
96 | }
|
---|
97 | plot = (DataTable)results[plotname].Value;
|
---|
98 | return plot;
|
---|
99 | }
|
---|
100 |
|
---|
101 | }
|
---|
102 | }
|
---|