[15064] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[17332] | 22 | using HEAL.Attic;
|
---|
[15064] | 23 | using HeuristicLab.Analysis;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Operators;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.EGO {
|
---|
| 32 | [Item("ModelQualityAnalyzer", "Collects RealVectors into a modifiablbe dataset")]
|
---|
[17332] | 33 | [StorableType("12c5a773-4397-45eb-ad25-0ffc897513f8")]
|
---|
| 34 | public class ModelQualityAnalyzer : SingleSuccessorOperator, IAnalyzer, IResultsOperator {
|
---|
[15064] | 35 | public override bool CanChangeName => true;
|
---|
| 36 | public bool EnabledByDefault => false;
|
---|
| 37 |
|
---|
| 38 | public ILookupParameter<IRegressionSolution> ModelParameter => (ILookupParameter<IRegressionSolution>)Parameters["Model"];
|
---|
| 39 | public ILookupParameter<ResultCollection> ResultsParameter => (ILookupParameter<ResultCollection>)Parameters["Results"];
|
---|
| 40 |
|
---|
| 41 | private const string PlotName = "Model Quality Values";
|
---|
| 42 | private const string R2RowName = "Training R²";
|
---|
| 43 | private const string MAERowName = "Training Mean Absolute Error";
|
---|
| 44 | private const string RMSERowName = "Training Root Mean Squared Error";
|
---|
| 45 | private const string ModelResultName = "Model";
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 | [StorableConstructor]
|
---|
[17332] | 49 | protected ModelQualityAnalyzer(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
[15064] | 50 | protected ModelQualityAnalyzer(ModelQualityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 51 | public ModelQualityAnalyzer() {
|
---|
| 52 | Parameters.Add(new LookupParameter<IRegressionSolution>("Model", "The model of this iteration"));
|
---|
| 53 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection to store the results in."));
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 57 | return new ModelQualityAnalyzer(this, cloner);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public sealed override IOperation Apply() {
|
---|
| 61 | var model = ModelParameter.ActualValue;
|
---|
| 62 | var results = ResultsParameter.ActualValue;
|
---|
| 63 | if (model == null) return base.Apply();
|
---|
| 64 | var plot = CreateDataTableResult(results);
|
---|
| 65 | plot.Rows[R2RowName].Values.Add(model.TrainingRSquared);
|
---|
| 66 | plot.Rows[MAERowName].Values.Add(model.TrainingMeanAbsoluteError);
|
---|
| 67 | plot.Rows[RMSERowName].Values.Add(model.TrainingRootMeanSquaredError);
|
---|
| 68 | if (!results.ContainsKey(ModelResultName)) results.Add(new Result(ModelResultName, model));
|
---|
| 69 | results[ModelResultName].Value = model;
|
---|
| 70 | return base.Apply();
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | private static DataTable CreateDataTableResult(ResultCollection results) {
|
---|
| 74 | DataTable plot;
|
---|
| 75 | if (!results.ContainsKey(PlotName)) {
|
---|
| 76 | plot = new DataTable("Model-Quality-Measures", "The quality measures of the models on the training data") {
|
---|
| 77 | VisualProperties = {
|
---|
| 78 | XAxisTitle = "Generation",
|
---|
| 79 | }
|
---|
| 80 | };
|
---|
| 81 | results.Add(new Result(PlotName, plot));
|
---|
| 82 | } else plot = (DataTable)results[PlotName].Value;
|
---|
| 83 | if (!plot.Rows.ContainsKey(R2RowName)) plot.Rows.Add(new DataRow(R2RowName, R2RowName, new double[0]));
|
---|
| 84 | if (!plot.Rows.ContainsKey(MAERowName)) plot.Rows.Add(new DataRow(MAERowName, MAERowName, new double[0]));
|
---|
| 85 | if (!plot.Rows.ContainsKey(RMSERowName)) plot.Rows.Add(new DataRow(RMSERowName, RMSERowName, new double[0]));
|
---|
| 86 |
|
---|
| 87 | return plot;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | }
|
---|
| 91 | }
|
---|