1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 |
|
---|
31 | // ReSharper disable once CheckNamespace
|
---|
32 | namespace HeuristicLab.Algorithms.EGO {
|
---|
33 |
|
---|
34 | [StorableClass]
|
---|
35 | [Item("RobustImprovementMeassure", "Adding or Subtracting the variance * factor to the model estimation")]
|
---|
36 | public class RobustImprovement : InfillCriterionBase {
|
---|
37 |
|
---|
38 | #region ParameterNames
|
---|
39 | private const string ConfidenceWeightParameterName = "ConfidenceWeight";
|
---|
40 | #endregion
|
---|
41 |
|
---|
42 | #region ParameterProperties
|
---|
43 | public IFixedValueParameter<DoubleValue> ConfidenceWeightParameter
|
---|
44 | {
|
---|
45 | get { return Parameters[ConfidenceWeightParameterName] as IFixedValueParameter<DoubleValue>; }
|
---|
46 | }
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | #region Properties
|
---|
50 | private double ConfidenceWeight
|
---|
51 | {
|
---|
52 | get { return ConfidenceWeightParameter.Value.Value; }
|
---|
53 | }
|
---|
54 | #endregion
|
---|
55 |
|
---|
56 | #region HL-Constructors, Serialization and Cloning
|
---|
57 | [StorableConstructor]
|
---|
58 | private RobustImprovement(bool deserializing) : base(deserializing) { }
|
---|
59 | private RobustImprovement(RobustImprovement original, Cloner cloner) : base(original, cloner) { }
|
---|
60 | public RobustImprovement() {
|
---|
61 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConfidenceWeightParameterName, "A value between 0 and 1 indicating the focus on exploration (0) or exploitation (1)", new DoubleValue(0.5)));
|
---|
62 | }
|
---|
63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
64 | return new RobustImprovement(this, cloner);
|
---|
65 | }
|
---|
66 | #endregion
|
---|
67 |
|
---|
68 | public override double Evaluate(IRegressionSolution solution, RealVector vector, bool maximization) {
|
---|
69 | var model = solution.Model as IConfidenceRegressionModel;
|
---|
70 | if (model == null) throw new ArgumentException("can not calculate EI without confidence measure");
|
---|
71 | var yhat = model.GetEstimation(vector);
|
---|
72 | var s = Math.Sqrt(model.GetVariance(vector)) * ConfidenceWeight;
|
---|
73 | return maximization ? yhat + s : yhat - s;
|
---|
74 | }
|
---|
75 |
|
---|
76 | }
|
---|
77 | }
|
---|