1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Threading;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Collections.Generic;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Algorithms.EGO {
|
---|
36 | [Item("DiscreteInfillSolver", "An IntegerVectorCreator that creates candidates by optimizing an infill-subproblem")]
|
---|
37 | [StorableClass]
|
---|
38 | public class DiscreteInfillSolver : IntegerVectorCreator, ICancellableOperator {
|
---|
39 |
|
---|
40 | public ILookupParameter<IAlgorithm> InfillOptimizationAlgorithmParamter => (ILookupParameter<IAlgorithm>)Parameters["InfillAlgorithm"];
|
---|
41 | public ILookupParameter<IRegressionSolution> ModelParameter => (ILookupParameter<IRegressionSolution>)Parameters["Model"];
|
---|
42 | public ILookupParameter<BoolValue> MaximizationParameter => (ILookupParameter<BoolValue>)Parameters["Maximization"];
|
---|
43 | public ILookupParameter<BoolValue> RemoveDuplicatesParameter => (ILookupParameter<BoolValue>)Parameters["RemoveDuplicates"];
|
---|
44 | public IFixedValueParameter<DoubleValue> DuplicateCutoffParameter => (IFixedValueParameter<DoubleValue>)Parameters["Duplicates Cutoff"];
|
---|
45 | public ILookupParameter<IntMatrix> InfillBoundsParameter => (ILookupParameter<IntMatrix>)Parameters["InfillBounds"];
|
---|
46 |
|
---|
47 | public CancellationToken Cancellation { get; set; }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected DiscreteInfillSolver(bool deserializing) : base(deserializing) { }
|
---|
51 | protected DiscreteInfillSolver(DiscreteInfillSolver original, Cloner cloner) : base(original, cloner) { }
|
---|
52 | public DiscreteInfillSolver() {
|
---|
53 | Parameters.Add(new LookupParameter<IAlgorithm>("InfillAlgorithm", "The algorithm used to optimize the infill problem") { Hidden = true });
|
---|
54 | Parameters.Add(new LookupParameter<IRegressionSolution>("Model", "The RegressionSolution upon which the InfillProblem operates") { Hidden = true });
|
---|
55 | Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Whether the original problem is a maximization problem") { Hidden = true });
|
---|
56 | Parameters.Add(new LookupParameter<BoolValue>("RemoveDuplicates", "Whether duplicates shall be removed") { Hidden = true });
|
---|
57 | Parameters.Add(new FixedValueParameter<DoubleValue>("Duplicates Cutoff", "The cut off radius for", new DoubleValue(0.01)) { Hidden = false });
|
---|
58 | Parameters.Add(new LookupParameter<IntMatrix>("InfillBounds", "The bounds applied for infill solving") { Hidden = true });
|
---|
59 | }
|
---|
60 |
|
---|
61 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
62 | return new DiscreteInfillSolver(this, cloner);
|
---|
63 | }
|
---|
64 |
|
---|
65 | protected override IntegerVector Create(IRandom random, IntValue length, IntMatrix bounds) {
|
---|
66 | var infillBounds = InfillBoundsParameter.ActualValue;
|
---|
67 | if (infillBounds != null && infillBounds.Rows > 0) {
|
---|
68 | bounds = infillBounds;
|
---|
69 | }
|
---|
70 |
|
---|
71 | var alg = InfillOptimizationAlgorithmParamter.ActualValue;
|
---|
72 | var model = ModelParameter.ActualValue;
|
---|
73 | var max = MaximizationParameter.ActualValue.Value;
|
---|
74 | var res = OptimizeInfillProblem(alg, model, max, bounds, length.Value, random);
|
---|
75 | var rad = DuplicateCutoffParameter.Value.Value;
|
---|
76 | if (!RemoveDuplicatesParameter.ActualValue.Value || GetMinDifference(model.ProblemData.Dataset, res) >= rad * rad) return res;
|
---|
77 |
|
---|
78 | bool changed = false;
|
---|
79 | var steps = 0;
|
---|
80 | var dims = new List<int>();
|
---|
81 |
|
---|
82 | //TODO this may take a long time to compute if many samples have already been evaluated in the surrounding area
|
---|
83 | //as the preferred region can not be sampled denser and denser due to the disceretization, the variance between two sampled points may be impossible to decease
|
---|
84 |
|
---|
85 | //TODO speed up GetMinDifferecnce via tree-structure
|
---|
86 | while (!changed || GetMinDifference(model.ProblemData.Dataset, res) < rad * rad) {
|
---|
87 | if (dims.Count == 0) {
|
---|
88 | if (!changed && steps > 0) throw new ArgumentException("Can not avoid duplicate");
|
---|
89 | dims = Enumerable.Range(0, res.Length).ToList();
|
---|
90 | steps++;
|
---|
91 | changed = false;
|
---|
92 | }
|
---|
93 | var i = random.Next(dims.Count);
|
---|
94 | var dim = dims[i];
|
---|
95 | dims.RemoveAt(i);
|
---|
96 | var step = bounds[dim % bounds.Rows, 2] * steps;
|
---|
97 | var low = checkIntBounds(bounds, dim, res[dim] - step);
|
---|
98 | var high = checkIntBounds(bounds, dim, res[dim] + step);
|
---|
99 | if (!low && !high) continue;
|
---|
100 | else if (low && high) res[dim] += (random.NextDouble() < 0.5 ? -step : step);
|
---|
101 | else if (low) res[dim] -= step;
|
---|
102 | else res[dim] += step;
|
---|
103 | changed = true;
|
---|
104 | }
|
---|
105 | return res;
|
---|
106 | }
|
---|
107 |
|
---|
108 |
|
---|
109 | private bool checkIntBounds(IntMatrix b, int row, int value) {
|
---|
110 | var bi = row % b.Rows;
|
---|
111 | var l = b[bi, 0];
|
---|
112 | var h = b[bi, 1];
|
---|
113 | var s = b[bi, 2];
|
---|
114 | return l <= value && h >= value && (value - l) % s == 0;
|
---|
115 | }
|
---|
116 |
|
---|
117 | private IntegerVector OptimizeInfillProblem(IAlgorithm algorithm, IRegressionSolution model, bool maximization, IntMatrix bounds, int length, IRandom random) {
|
---|
118 | var infillProblem = algorithm.Problem as DiscreteInfillProblem;
|
---|
119 | if (infillProblem == null) throw new ArgumentException("The algortihm has no InfillProblem to solve");
|
---|
120 | infillProblem.Encoding.Length = length;
|
---|
121 | infillProblem.Encoding.Bounds = bounds;
|
---|
122 | infillProblem.Initialize(model, maximization);
|
---|
123 | var res = EgoUtilities.SyncRunSubAlgorithm(algorithm, random.Next(int.MaxValue), Cancellation);
|
---|
124 | var v = res[DiscreteInfillProblem.BestInfillSolutionResultName].Value as IntegerVector;
|
---|
125 | algorithm.Runs.Clear();
|
---|
126 | return v;
|
---|
127 | }
|
---|
128 |
|
---|
129 | private static double GetMinDifference(IDataset data, IntegerVector r) {
|
---|
130 | var mind = double.MaxValue;
|
---|
131 | for (var i = 0; i < data.Rows; i++) {
|
---|
132 | var d = 0.0;
|
---|
133 | for (var j = 0; j < r.Length; j++) {
|
---|
134 | var d2 = data.GetDoubleValue("input" + j, i) - r[j];
|
---|
135 | d += d2 * d2;
|
---|
136 | }
|
---|
137 | if (!(d < mind)) continue;
|
---|
138 | mind = d;
|
---|
139 | }
|
---|
140 | return mind;
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 | }
|
---|
146 | }
|
---|