Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2745_EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/DiscreteEGO/DiscreteEfficientGlobalOptimizationAlgorithm.cs @ 17456

Last change on this file since 17456 was 17332, checked in by bwerth, 5 years ago

#2745 updated persistence to HEAL.Attic

File size: 29.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Threading;
26using HEAL.Attic;
27using HeuristicLab.Algorithms.DataAnalysis;
28using HeuristicLab.Analysis;
29using HeuristicLab.Common;
30using HeuristicLab.Core;
31using HeuristicLab.Data;
32using HeuristicLab.Encodings.IntegerVectorEncoding;
33using HeuristicLab.Optimization;
34using HeuristicLab.Parameters;
35using HeuristicLab.Problems.DataAnalysis;
36using HeuristicLab.Problems.Instances;
37using HeuristicLab.Random;
38
39namespace HeuristicLab.Algorithms.EGO {
40    [StorableType("26f99b28-75f1-4186-9c8b-b5c0548ea768")]
41    [Creatable(CreatableAttribute.Categories.Algorithms, Priority = 95)]
42  [Item("DiscreteEfficientGlobalOptimizationAlgorithm", "Solves a problem by sequentially learning a model, solving a subproblem on the model and evaluating the best found solution for this subproblem.")]
43  public class DiscreteEfficientGlobalOptimizationAlgorithm : BasicAlgorithm, ISurrogateAlgorithm<IntegerVector> {
44    #region Basic-Alg-Essentials
45    public override bool SupportsPause => true;
46    public override Type ProblemType => typeof(SingleObjectiveBasicProblem<IEncoding>);
47    public new SingleObjectiveBasicProblem<IEncoding> Problem {
48      get { return (SingleObjectiveBasicProblem<IEncoding>)base.Problem; }
49      set { base.Problem = value; }
50    }
51    #endregion
52
53    #region ParameterNames
54    private const string GenerationSizeParameterName = "GenerationSize";
55    private const string InfillCriterionParameterName = "InfillCriterion";
56    private const string InfillOptimizationAlgorithmParameterName = "InfillOptimizationAlgorithm";
57    private const string InfillOptimizationRestartsParameterName = "InfillOptimizationRestarts";
58    private const string InitialEvaluationsParameterName = "Initial Evaluations";
59    private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
60    private const string MaximumRuntimeParameterName = "Maximum Runtime";
61    private const string RegressionAlgorithmParameterName = "RegressionAlgorithm";
62    private const string SeedParameterName = "Seed";
63    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
64    private const string MaximalDataSetSizeParameterName = "MaximalDataSetSize";
65    private const string RemoveDuplicatesParamterName = "RemoveDuplicates";
66    private const string InitialSamplesParameterName = "InitialSamplesFile";
67    private const string BaselineVectorParameterName = "BaselineVector";
68    private const string InitialSamplingPlanParamterName = "InitialSamplingPlan";
69    #endregion
70
71    #region ResultNames
72    private const string BestQualityResultName = "Best Quality";
73    private const string BestSolutionResultName = "Best Solution";
74    private const string EvaluatedSoultionsResultName = "EvaluatedSolutions";
75    private const string IterationsResultName = "Iterations";
76    private const string RegressionSolutionResultName = "Model";
77    private const string QualitiesChartResultName = "Qualities";
78    private const string BestQualitiesRowResultName = "Best Quality";
79    private const string CurrentQualitiesRowResultName = "Current Quality";
80    private const string WorstQualitiesRowResultName = "Worst Quality";
81    #endregion
82
83    #region ParameterProperties
84    public IFixedValueParameter<IntValue> GenerationSizeParemeter => Parameters[GenerationSizeParameterName] as IFixedValueParameter<IntValue>;
85    public IConstrainedValueParameter<IInfillCriterion> InfillCriterionParameter => Parameters[InfillCriterionParameterName] as IConstrainedValueParameter<IInfillCriterion>;
86    public IValueParameter<Algorithm> InfillOptimizationAlgorithmParameter => Parameters[InfillOptimizationAlgorithmParameterName] as IValueParameter<Algorithm>;
87    public IFixedValueParameter<IntValue> InfillOptimizationRestartsParemeter => Parameters[InfillOptimizationRestartsParameterName] as IFixedValueParameter<IntValue>;
88    public IFixedValueParameter<IntValue> InitialEvaluationsParameter => Parameters[InitialEvaluationsParameterName] as IFixedValueParameter<IntValue>;
89    public IFixedValueParameter<IntValue> MaximumEvaluationsParameter => Parameters[MaximumEvaluationsParameterName] as IFixedValueParameter<IntValue>;
90    public IFixedValueParameter<IntValue> MaximumRuntimeParameter => Parameters[MaximumRuntimeParameterName] as IFixedValueParameter<IntValue>;
91    public IValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>> RegressionAlgorithmParameter => Parameters[RegressionAlgorithmParameterName] as IValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>;
92    public IFixedValueParameter<IntValue> SeedParameter => Parameters[SeedParameterName] as IFixedValueParameter<IntValue>;
93    public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter => Parameters[SetSeedRandomlyParameterName] as IFixedValueParameter<BoolValue>;
94    public IFixedValueParameter<IntValue> MaximalDataSetSizeParameter => Parameters[MaximalDataSetSizeParameterName] as IFixedValueParameter<IntValue>;
95    public IFixedValueParameter<BoolValue> RemoveDuplicatesParameter => Parameters[RemoveDuplicatesParamterName] as IFixedValueParameter<BoolValue>;
96    public IFixedValueParameter<FileValue> InitialSamplesParameter => Parameters[InitialSamplesParameterName] as IFixedValueParameter<FileValue>;
97    public IValueParameter<IntegerVector> BaselineVectorParameter => Parameters[BaselineVectorParameterName] as IValueParameter<IntegerVector>;
98    public IConstrainedValueParameter<IInitialSampling<IntegerVector>> InitialSamplingPlanParameter => Parameters[InitialSamplingPlanParamterName] as IConstrainedValueParameter<IInitialSampling<IntegerVector>>;
99    #endregion
100
101    #region Properties
102    public int GenerationSize => GenerationSizeParemeter.Value.Value;
103    public IInfillCriterion InfillCriterion => InfillCriterionParameter.Value;
104    public Algorithm InfillOptimizationAlgorithm => InfillOptimizationAlgorithmParameter.Value;
105    public int InfillOptimizationRestarts => InfillOptimizationRestartsParemeter.Value.Value;
106    public int InitialEvaluations => InitialEvaluationsParameter.Value.Value;
107    public int MaximumEvaluations => MaximumEvaluationsParameter.Value.Value;
108    public int MaximumRuntime => MaximumRuntimeParameter.Value.Value;
109    public IDataAnalysisAlgorithm<IRegressionProblem> RegressionAlgorithm => RegressionAlgorithmParameter.Value;
110    public int Seed => SeedParameter.Value.Value;
111    public bool SetSeedRandomly => SetSeedRandomlyParameter.Value.Value;
112    public int MaximalDatasetSize => MaximalDataSetSizeParameter.Value.Value;
113    private IEnumerable<Tuple<IntegerVector, double>> DataSamples => Samples.Count > MaximalDatasetSize && MaximalDatasetSize > 0
114      ? Samples.Skip(Samples.Count - MaximalDatasetSize)
115      : Samples;
116    private bool RemoveDuplicates => RemoveDuplicatesParameter.Value.Value;
117    private IntegerVector BaselineVector => BaselineVectorParameter.Value;
118    private IInitialSampling<IntegerVector> InitialSamplingPlan => InitialSamplingPlanParameter.Value;
119    #endregion
120
121    #region StorableProperties
122    [Storable]
123    private IRandom Random = new MersenneTwister();
124    [Storable]
125    private List<Tuple<IntegerVector, double>> Samples;
126    [Storable]
127    private List<Tuple<IntegerVector, double>> InitialSamples;
128    #endregion
129
130    #region ResultsProperties
131    private double ResultsBestQuality {
132      get { return ((DoubleValue)Results[BestQualityResultName].Value).Value; }
133      set { ((DoubleValue)Results[BestQualityResultName].Value).Value = value; }
134    }
135    private IntegerVector ResultsBestSolution {
136      get { return (IntegerVector)Results[BestSolutionResultName].Value; }
137      set { Results[BestSolutionResultName].Value = value; }
138    }
139    private int ResultsEvaluations {
140      get { return ((IntValue)Results[EvaluatedSoultionsResultName].Value).Value; }
141      set { ((IntValue)Results[EvaluatedSoultionsResultName].Value).Value = value; }
142    }
143    private int ResultsIterations {
144      get { return ((IntValue)Results[IterationsResultName].Value).Value; }
145      set { ((IntValue)Results[IterationsResultName].Value).Value = value; }
146    }
147    private DataTable ResultsQualities => (DataTable)Results[QualitiesChartResultName].Value;
148    private DataRow ResultsQualitiesBest => ResultsQualities.Rows[BestQualitiesRowResultName];
149    private DataRow ResultsQualitiesWorst => ResultsQualities.Rows[WorstQualitiesRowResultName];
150    private DataRow ResultsQualitiesIteration => ResultsQualities.Rows[CurrentQualitiesRowResultName];
151    private IRegressionSolution ResultsModel {
152      get { return (IRegressionSolution)Results[RegressionSolutionResultName].Value; }
153      set { Results[RegressionSolutionResultName].Value = value; }
154    }
155    #endregion
156
157    #region HLConstructors
158    [StorableConstructor]
159    protected DiscreteEfficientGlobalOptimizationAlgorithm(StorableConstructorFlag deserializing) : base(deserializing) { }
160    [StorableHook(HookType.AfterDeserialization)]
161    protected void AfterDeseialization() {
162      RegisterEventhandlers();
163    }
164    protected DiscreteEfficientGlobalOptimizationAlgorithm(DiscreteEfficientGlobalOptimizationAlgorithm original, Cloner cloner) : base(original, cloner) {
165      Random = cloner.Clone(Random);
166      if (original.Samples != null) Samples = original.Samples.Select(x => new Tuple<IntegerVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList();
167      if (original.InitialSamples != null) InitialSamples = original.InitialSamples.Select(x => new Tuple<IntegerVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList();
168      RegisterEventhandlers();
169    }
170    public override IDeepCloneable Clone(Cloner cloner) { return new DiscreteEfficientGlobalOptimizationAlgorithm(this, cloner); }
171    public DiscreteEfficientGlobalOptimizationAlgorithm() {
172      IProblemInstanceExporter dummy = new RegressionProblem(); //this variable is irrelevant
173      //the dummy variable enforces a using-Statement for HeuristicLab.Problems.Instances
174      //"new ValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>" requires no using-Statement, but nontheless it requires HeuristicLab.Problems.Instances to be referenced 
175      //Having HeuristicLab.Problems.Instances referenced but not used, causes the Essential-Unit-tests to fail.
176
177      var cmaes = new OffspringSelectionGeneticAlgorithm.OffspringSelectionGeneticAlgorithm() {
178        MaximumGenerations = new IntValue(300),
179        PopulationSize = new IntValue(50)
180      };
181      var model = new GaussianProcessRegression {
182        Problem = new RegressionProblem()
183      };
184      model.CovarianceFunctionParameter.Value = new CovarianceRationalQuadraticIso();
185      Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(int.MaxValue)));
186      Parameters.Add(new FixedValueParameter<IntValue>(InitialEvaluationsParameterName, "", new IntValue(10)));
187      Parameters.Add(new FixedValueParameter<IntValue>(MaximumRuntimeParameterName, "The maximum runtime in seconds after which the algorithm stops. Use -1 to specify no limit for the runtime", new IntValue(-1)));
188      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
189      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
190      Parameters.Add(new ValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>(RegressionAlgorithmParameterName, "The model used to approximate the problem", model));
191      Parameters.Add(new ValueParameter<Algorithm>(InfillOptimizationAlgorithmParameterName, "The algorithm used to solve the expected improvement subproblem", cmaes));
192      Parameters.Add(new FixedValueParameter<IntValue>(InfillOptimizationRestartsParameterName, "Number of restarts of the SubAlgortihm to avoid local optima", new IntValue(1)));
193      Parameters.Add(new FixedValueParameter<IntValue>(GenerationSizeParameterName, "Number points that are sampled every iteration (stadard EGO: 1)", new IntValue(1)));
194      Parameters.Add(new FixedValueParameter<IntValue>(MaximalDataSetSizeParameterName, "The maximum number of sample points used to generate the model. Set 0 or less to use always all samples ", new IntValue(-1)));
195      Parameters.Add(new FixedValueParameter<BoolValue>(RemoveDuplicatesParamterName, "Wether duplicate samples should be replaced by a single sample with an averaged quality. This GREATLY decreases the chance of ill conditioned models (unbuildable models) but is not theoretically sound as the model ignores the increasing certainty in this region"));
196      Parameters.Add(new FixedValueParameter<FileValue>(InitialSamplesParameterName, "The file specifying some initial samples used to jump start the algorithm. These samples are not counted as evaluations. If InitialEvaluations is more than the samples specified in the file, the rest is uniformly random generated and evaluated.", new FileValue()));
197      Parameters.Add(new ValueParameter<IntegerVector>(BaselineVectorParameterName, "A vector used to create a baseline, this vector is evaluated once and is not part of the modeling process (has no influence on algorithm performance)"));
198      var eqi = new ExpectedQuantileImprovement();
199      eqi.MaxEvaluationsParameter.Value = MaximumEvaluationsParameter.Value;
200      var criteria = new ItemSet<IInfillCriterion> { new ExpectedImprovement(), new AugmentedExpectedImprovement(), new ExpectedQuality(), eqi, new MinimalQuantileCriterium(), new PluginExpectedImprovement() };
201      Parameters.Add(new ConstrainedValueParameter<IInfillCriterion>(InfillCriterionParameterName, "Decision what value should decide the next sample", criteria, criteria.First()));
202      var intialSamplingPlans = new ItemSet<IInitialSampling<IntegerVector>> { new UniformRandomDiscreteSampling() };
203      Parameters.Add(new ConstrainedValueParameter<IInitialSampling<IntegerVector>>(InitialSamplingPlanParamterName, "Determies the initial samples from which the first model can be built.", intialSamplingPlans, intialSamplingPlans.First()));
204      SetInfillProblem();
205      RegisterEventhandlers();
206    }
207    #endregion
208    public void SetInitialSamples(IntegerVector[] individuals, double[] qualities) {
209      InitialSamples = individuals.Zip(qualities, (individual, d) => new Tuple<IntegerVector, double>(individual, d)).ToList();
210    }
211    protected override void Initialize(CancellationToken cancellationToken) {
212      base.Initialize(cancellationToken);
213      //encoding
214      var enc = Problem.Encoding as IntegerVectorEncoding;
215      if (enc == null) throw new ArgumentException("The EGO algorithm can only be applied to IntegerVectorEncodings");
216      var infillProblem = InfillOptimizationAlgorithm.Problem as DiscreteInfillProblem;
217      if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm has no DiscreteInfillProblem. Troubles with Eventhandling?");
218
219      //random
220      if (SetSeedRandomly) SeedParameter.Value.Value = new System.Random().Next();
221      Random.Reset(Seed);
222      Samples = InitialSamples?.ToList() ?? new List<Tuple<IntegerVector, double>>();
223
224      //results
225      Results.Add(new Result(IterationsResultName, new IntValue(0)));
226      Results.Add(new Result(EvaluatedSoultionsResultName, new IntValue(Samples.Count)));
227      Results.Add(new Result(BestSolutionResultName, new IntegerVector(1)));
228      Results.Add(new Result(BestQualityResultName, new DoubleValue(Problem.Maximization ? double.MinValue : double.MaxValue)));
229      Results.Add(new Result(RegressionSolutionResultName, typeof(IRegressionSolution)));
230      var table = new DataTable(QualitiesChartResultName);
231      table.Rows.Add(new DataRow(BestQualitiesRowResultName));
232      table.Rows.Add(new DataRow(WorstQualitiesRowResultName));
233      table.Rows.Add(new DataRow(CurrentQualitiesRowResultName));
234      Results.Add(new Result(QualitiesChartResultName, table));
235      if (BaselineVector != null && BaselineVector.Length == enc.Length) Results.Add(new Result("BaselineValue", new DoubleValue(Evaluate(BaselineVector).Item2)));
236
237
238
239    }
240    protected override void Run(CancellationToken cancellationToken) {
241      //initial samples
242      if (Samples.Count < InitialEvaluations) {
243        var points = InitialSamplingPlan.GetSamples(InitialEvaluations - Samples.Count, Samples.Select(x => x.Item1).ToArray(), (IntegerVectorEncoding)Problem.Encoding, Random);
244        foreach (var t in points) {
245          try {
246            Samples.Add(Evaluate(t));
247            cancellationToken.ThrowIfCancellationRequested();
248          }
249          finally {
250            Analyze();
251          }
252        }
253      }
254      //adaptive samples
255      for (ResultsIterations = 0; ResultsEvaluations < MaximumEvaluations; ResultsIterations++) {
256        try {
257          ResultsModel = BuildModel(cancellationToken);
258          if (ResultsModel == null) break;
259          cancellationToken.ThrowIfCancellationRequested();
260          for (var i = 0; i < GenerationSize; i++) {
261            var samplepoint = OptimizeInfillProblem(cancellationToken);
262            if (RemoveDuplicates) {
263
264            }
265            var sample = Evaluate(samplepoint);
266            Samples.Add(sample);
267            cancellationToken.ThrowIfCancellationRequested();
268          }
269
270        }
271        finally {
272          Analyze();
273        }
274      }
275    }
276
277    #region Eventhandling
278    private void RegisterEventhandlers() {
279      DeregisterEventhandlers();
280      RegressionAlgorithmParameter.ValueChanged += OnModelAlgorithmChanged;
281      InfillOptimizationAlgorithmParameter.ValueChanged += OnInfillOptimizationAlgorithmChanged;
282      InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged;
283      InfillCriterionParameter.ValueChanged += InfillCriterionChanged;
284      InitialSamplesParameter.ToStringChanged += OnInitialSamplesChanged;
285
286
287    }
288    private void DeregisterEventhandlers() {
289      RegressionAlgorithmParameter.ValueChanged -= OnModelAlgorithmChanged;
290      InfillOptimizationAlgorithmParameter.ValueChanged -= OnInfillOptimizationAlgorithmChanged;
291      InfillOptimizationAlgorithm.ProblemChanged -= InfillOptimizationProblemChanged;
292      InfillCriterionParameter.ValueChanged -= InfillCriterionChanged;
293      InitialSamplesParameter.ToStringChanged -= OnInitialSamplesChanged;
294    }
295    private void OnInfillOptimizationAlgorithmChanged(object sender, EventArgs args) {
296      SetInfillProblem();
297      InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged;
298    }
299    private void InfillOptimizationProblemChanged(object sender, EventArgs e) {
300      InfillOptimizationAlgorithm.ProblemChanged -= InfillOptimizationProblemChanged;
301      SetInfillProblem();
302      InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged;
303    }
304    private void InfillCriterionChanged(object sender, EventArgs e) {
305      var infillProblem = InfillOptimizationAlgorithm.Problem as DiscreteInfillProblem;
306      if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm has no DiscreteInfillProblem. Troubles with Eventhandling?");
307      infillProblem.InfillCriterion = InfillCriterion;
308    }
309    private void OnModelAlgorithmChanged(object sender, EventArgs args) {
310      RegressionAlgorithm.Problem = new RegressionProblem();
311    }
312    private void OnInitialSamplesChanged(object sender, EventArgs args) { }
313    protected override void OnExecutionTimeChanged() {
314      base.OnExecutionTimeChanged();
315      if (CancellationTokenSource == null) return;
316      if (MaximumRuntime == -1) return;
317      if (ExecutionTime.TotalSeconds > MaximumRuntime) CancellationTokenSource.Cancel();
318    }
319    public override void Pause() {
320      if (InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Started || InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Paused) InfillOptimizationAlgorithm.Stop();
321      if (RegressionAlgorithm.ExecutionState == ExecutionState.Started || RegressionAlgorithm.ExecutionState == ExecutionState.Paused) RegressionAlgorithm.Stop();
322      base.Pause();
323    }
324    public override void Stop() {
325      if (InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Started || InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Paused) InfillOptimizationAlgorithm.Stop();
326      if (RegressionAlgorithm.ExecutionState == ExecutionState.Started || RegressionAlgorithm.ExecutionState == ExecutionState.Paused) RegressionAlgorithm.Stop();
327      base.Stop();
328    }
329    #endregion
330
331    #region helpers
332    private IRegressionSolution BuildModel(CancellationToken cancellationToken) {
333      var dataset = EgoUtilities.GetDataSet(DataSamples.ToList());
334      var problemdata = new RegressionProblemData(dataset, dataset.VariableNames.Where(x => !x.Equals("output")), "output");
335      problemdata.TrainingPartition.Start = 0;
336      problemdata.TrainingPartition.End = dataset.Rows;
337      problemdata.TestPartition.Start = dataset.Rows;
338      problemdata.TestPartition.End = dataset.Rows;
339
340      //train
341      var problem = (RegressionProblem)RegressionAlgorithm.Problem;
342      problem.ProblemDataParameter.Value = problemdata;
343      var i = 0;
344      IRegressionSolution solution = null;
345
346      while (solution == null && i++ < 100) {
347        var results = EgoUtilities.SyncRunSubAlgorithm(RegressionAlgorithm, Random.Next(int.MaxValue), cancellationToken);
348        solution = results.Select(x => x.Value).OfType<IRegressionSolution>().SingleOrDefault();
349        cancellationToken.ThrowIfCancellationRequested();
350      }
351
352      //try creating a model with old hyperparameters and new dataset;
353      var gp = RegressionAlgorithm as GaussianProcessRegression;
354      var oldmodel = ResultsModel as GaussianProcessRegressionSolution;
355      if (gp != null && oldmodel != null) {
356        var n = Samples.First().Item1.Length;
357        var mean = (IMeanFunction)oldmodel.Model.MeanFunction.Clone();
358        var cov = (ICovarianceFunction)oldmodel.Model.CovarianceFunction.Clone();
359        if (mean.GetNumberOfParameters(n) != 0 || cov.GetNumberOfParameters(n) != 0) throw new ArgumentException("DEBUG: assumption about fixed paramters wrong");
360        var noise = 0.0;
361        double[] hyp = { noise };
362        try {
363          var model = new GaussianProcessModel(problemdata.Dataset, problemdata.TargetVariable,
364            problemdata.AllowedInputVariables, problemdata.TrainingIndices, hyp, mean, cov);
365          model.FixParameters();
366          var sol = new GaussianProcessRegressionSolution(model, problemdata);
367          if (solution == null || solution.TrainingMeanSquaredError > sol.TrainingMeanSquaredError) {
368            solution = sol;
369          }
370        }
371        catch (ArgumentException) { }
372      }
373
374
375      if (!ResultsQualities.Rows.ContainsKey("DEBUG: Degenerates")) ResultsQualities.Rows.Add(new DataRow("DEBUG: Degenerates"));
376      var row = ResultsQualities.Rows["DEBUG: Degenerates"];
377      row.Values.Add(i - 1);
378      if (solution == null) Results.Add(new Result("Status", new StringValue("The Algorithm did not return a Model")));
379      else {
380        if (!ResultsQualities.Rows.ContainsKey("DEBUG: RMSE")) ResultsQualities.Rows.Add(new DataRow("DEBUG: RMSE"));
381        row = ResultsQualities.Rows["DEBUG: RMSE"];
382        row.Values.Add(Math.Sqrt(solution.TrainingMeanSquaredError));
383      }
384
385      RegressionAlgorithm.Runs.Clear();
386      return solution;
387    }
388    private IntegerVector OptimizeInfillProblem(CancellationToken cancellationToken) {
389      //parameterize and check InfillProblem
390      var infillProblem = InfillOptimizationAlgorithm.Problem as DiscreteInfillProblem;
391      if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm does not have an InfillProblem.");
392      if (infillProblem.InfillCriterion != InfillCriterion) throw new ArgumentException("InfillCiriterion for Problem is not correctly set.");
393      var enc = Problem.Encoding as IntegerVectorEncoding;
394      infillProblem.Encoding.Bounds = enc.Bounds;
395      infillProblem.Encoding.Length = enc.Length;
396      infillProblem.Initialize(ResultsModel, Problem.Maximization);
397
398
399
400      IntegerVector bestVector = null;
401      var bestValue = infillProblem.Maximization ? double.NegativeInfinity : double.PositiveInfinity;
402      for (var i = 0; i < InfillOptimizationRestarts; i++) {
403        //optimize
404        var res = EgoUtilities.SyncRunSubAlgorithm(InfillOptimizationAlgorithm, Random.Next(int.MaxValue), cancellationToken);
405        cancellationToken.ThrowIfCancellationRequested();
406        //extract results
407        if (!res.ContainsKey(DiscreteInfillProblem.BestInfillSolutionResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best solution");
408        var v = res[DiscreteInfillProblem.BestInfillSolutionResultName].Value as IntegerVector;
409        if (!res.ContainsKey(DiscreteInfillProblem.BestInfillQualityResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best quality");
410        var d = res[DiscreteInfillProblem.BestInfillQualityResultName].Value as DoubleValue;
411        if (d == null || v == null) throw new ArgumentException("The InfillOptimizationAlgorithm did not return the expected result types");
412        //check for improvement
413        if (infillProblem.Maximization != d.Value > bestValue) continue;
414        bestValue = d.Value;
415        bestVector = v;
416      }
417      InfillOptimizationAlgorithm.Runs.Clear();
418      return bestVector;
419    }
420
421    private void Analyze() {
422      ResultsEvaluations = Samples.Count;
423      var max = Samples.ArgMax(x => x.Item2);
424      var min = Samples.ArgMin(x => x.Item2);
425      var best = Samples[Problem.Maximization ? max : min];
426      ResultsBestQuality = best.Item2;
427      ResultsBestSolution = best.Item1;
428      ResultsQualitiesBest.Values.Add(ResultsBestQuality);
429      ResultsQualitiesIteration.Values.Add(Samples[Samples.Count - 1].Item2);
430      ResultsQualitiesWorst.Values.Add(Samples[Problem.Maximization ? min : max].Item2);
431      Problem.Analyze(Samples.Select(x => GetIndividual(x.Item1)).ToArray(), Samples.Select(x => x.Item2).ToArray(), Results, Random);
432      if (Samples.Count != 0 && Samples[0].Item1.Length == 2) AnalyzeSampleDistribution();
433      AnalyzePredictionCorrelation();
434    }
435
436    private void AnalyzeSampleDistribution() {
437      const string plotname = "DEBUG:Sample Distribution";
438      const string rowInit = "Initial Samples";
439      const string rowAll = "All Samples";
440      if (!Results.ContainsKey(plotname)) Results.Add(new Result(plotname, new ScatterPlot()));
441      var plot = (ScatterPlot)Results[plotname].Value;
442      if (!plot.Rows.ContainsKey(rowInit) && InitialSamples != null && InitialSamples.Count > 0)
443        plot.Rows.Add(new ScatterPlotDataRow(rowInit, "samples from inital file (already evaulated)", InitialSamples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1]))));
444      if (!plot.Rows.ContainsKey(rowAll)) plot.Rows.Add(new ScatterPlotDataRow(rowAll, "All samples", new Point2D<double>[0]));
445      else { plot.Rows[rowAll].Points.Clear(); }
446      plot.Rows[rowAll].Points.AddRange(Samples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1])));
447    }
448
449    private void AnalyzePredictionCorrelation() {
450      const string plotName = "Prediction";
451      const string rowName = "Samples";
452      const string lastrowName = "Last Sample";
453      if (!Results.ContainsKey(plotName)) Results.Add(new Result(plotName, new ScatterPlot()));
454      var plot = (ScatterPlot)Results[plotName].Value;
455      if (!plot.Rows.ContainsKey(rowName)) plot.Rows.Add(new ScatterPlotDataRow(rowName, rowName, new List<Point2D<double>>()));
456      if (!plot.Rows.ContainsKey(lastrowName)) plot.Rows.Add(new ScatterPlotDataRow(lastrowName, lastrowName, new List<Point2D<double>>()));
457      var p = Samples[Samples.Count - 1];
458      if (ResultsModel != null) plot.Rows[rowName].Points.Add(new Point2D<double>(ResultsModel.Model.GetEstimation(p.Item1), p.Item2, p.Item1));
459      plot.VisualProperties.YAxisTitle = "True Objective Value";
460      plot.VisualProperties.XAxisTitle = "Predicted Objective Value";
461
462    }
463
464
465
466    private Individual GetIndividual(IntegerVector r) {
467      var scope = new Scope();
468      scope.Variables.Add(new Variable(Problem.Encoding.Name, r));
469      return new SingleEncodingIndividual(Problem.Encoding, scope);
470    }
471    private Tuple<IntegerVector, double> Evaluate(IntegerVector point) {
472      return new Tuple<IntegerVector, double>(point, Problem.Evaluate(GetIndividual(point), Random));
473    }
474
475    private void SetInfillProblem() {
476      InfillOptimizationAlgorithm.Problem = new DiscreteInfillProblem { InfillCriterion = InfillCriterion };
477    }
478    #endregion
479  }
480}
Note: See TracBrowser for help on using the repository browser.