1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
27 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.MainForm;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
33 | [View("Error Characteristics Curve")]
|
---|
34 | [Content(typeof(IRegressionSolution))]
|
---|
35 | public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
|
---|
36 | protected const string TrainingSamples = "Training";
|
---|
37 | protected const string TestSamples = "Test";
|
---|
38 | protected const string AllSamples = "All Samples";
|
---|
39 |
|
---|
40 | public RegressionSolutionErrorCharacteristicsCurveView()
|
---|
41 | : base() {
|
---|
42 | InitializeComponent();
|
---|
43 |
|
---|
44 | cmbSamples.Items.Add(TrainingSamples);
|
---|
45 | cmbSamples.Items.Add(TestSamples);
|
---|
46 | cmbSamples.Items.Add(AllSamples);
|
---|
47 |
|
---|
48 | cmbSamples.SelectedIndex = 0;
|
---|
49 |
|
---|
50 | residualComboBox.SelectedIndex = 0;
|
---|
51 |
|
---|
52 | chart.CustomizeAllChartAreas();
|
---|
53 | chart.ChartAreas[0].AxisX.Title = residualComboBox.SelectedItem.ToString();
|
---|
54 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
55 | chart.ChartAreas[0].AxisX.Maximum = 0.0;
|
---|
56 | chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount;
|
---|
57 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
58 |
|
---|
59 | chart.ChartAreas[0].AxisY.Title = "Ratio of Residuals";
|
---|
60 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
61 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
62 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
63 | chart.ChartAreas[0].CursorY.Interval = 0.01;
|
---|
64 | }
|
---|
65 |
|
---|
66 | // the view holds one regression solution as content but also contains several other regression solutions for comparison
|
---|
67 | // the following invariants must hold
|
---|
68 | // (Solutions.IsEmpty && Content == null) ||
|
---|
69 | // (Solutions[0] == Content && Solutions.All(s => s.ProblemData.TargetVariable == Content.TargetVariable))
|
---|
70 |
|
---|
71 | public new IRegressionSolution Content {
|
---|
72 | get { return (IRegressionSolution)base.Content; }
|
---|
73 | set { base.Content = value; }
|
---|
74 | }
|
---|
75 |
|
---|
76 | private readonly IList<IRegressionSolution> solutions = new List<IRegressionSolution>();
|
---|
77 | public IEnumerable<IRegressionSolution> Solutions {
|
---|
78 | get { return solutions.AsEnumerable(); }
|
---|
79 | }
|
---|
80 |
|
---|
81 | public IRegressionProblemData ProblemData {
|
---|
82 | get {
|
---|
83 | if (Content == null) return null;
|
---|
84 | return Content.ProblemData;
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 | protected override void RegisterContentEvents() {
|
---|
89 | base.RegisterContentEvents();
|
---|
90 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
91 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
92 | }
|
---|
93 | protected override void DeregisterContentEvents() {
|
---|
94 | base.DeregisterContentEvents();
|
---|
95 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
96 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
97 | }
|
---|
98 |
|
---|
99 | protected virtual void Content_ModelChanged(object sender, EventArgs e) {
|
---|
100 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ModelChanged, sender, e);
|
---|
101 | else {
|
---|
102 | // recalculate baseline solutions (for symbolic regression models the features used in the model might have changed)
|
---|
103 | solutions.Clear(); // remove all
|
---|
104 | solutions.Add(Content); // re-add the first solution
|
---|
105 | // and recalculate all other solutions
|
---|
106 | foreach (var sol in CreateBaselineSolutions()) {
|
---|
107 | solutions.Add(sol);
|
---|
108 | }
|
---|
109 | UpdateChart();
|
---|
110 | }
|
---|
111 | }
|
---|
112 | protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
113 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ProblemDataChanged, sender, e);
|
---|
114 | else {
|
---|
115 | // recalculate baseline solutions
|
---|
116 | solutions.Clear(); // remove all
|
---|
117 | solutions.Add(Content); // re-add the first solution
|
---|
118 | // and recalculate all other solutions
|
---|
119 | foreach (var sol in CreateBaselineSolutions()) {
|
---|
120 | solutions.Add(sol);
|
---|
121 | }
|
---|
122 | UpdateChart();
|
---|
123 | }
|
---|
124 | }
|
---|
125 | protected override void OnContentChanged() {
|
---|
126 | base.OnContentChanged();
|
---|
127 | // the content object is always stored as the first element in solutions
|
---|
128 | solutions.Clear();
|
---|
129 | ReadOnly = Content == null;
|
---|
130 | if (Content != null) {
|
---|
131 | // recalculate all solutions
|
---|
132 | solutions.Add(Content);
|
---|
133 | if (ProblemData.TrainingIndices.Any()) {
|
---|
134 | foreach (var sol in CreateBaselineSolutions())
|
---|
135 | solutions.Add(sol);
|
---|
136 | // more solutions can be added by drag&drop
|
---|
137 | }
|
---|
138 | }
|
---|
139 | UpdateChart();
|
---|
140 | }
|
---|
141 |
|
---|
142 | protected virtual void UpdateChart() {
|
---|
143 | chart.Series.Clear();
|
---|
144 | chart.Annotations.Clear();
|
---|
145 | chart.ChartAreas[0].AxisX.Maximum = 0.0;
|
---|
146 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
147 |
|
---|
148 | if (Content == null) return;
|
---|
149 | if (cmbSamples.SelectedItem.ToString() == TrainingSamples && !ProblemData.TrainingIndices.Any()) return;
|
---|
150 | if (cmbSamples.SelectedItem.ToString() == TestSamples && !ProblemData.TestIndices.Any()) return;
|
---|
151 |
|
---|
152 | foreach (var sol in Solutions) {
|
---|
153 | AddSeries(sol);
|
---|
154 | }
|
---|
155 |
|
---|
156 | chart.ChartAreas[0].AxisX.Title = residualComboBox.SelectedItem.ToString();
|
---|
157 | }
|
---|
158 |
|
---|
159 | protected void AddSeries(IRegressionSolution solution) {
|
---|
160 | if (chart.Series.Any(s => s.Name == solution.Name)) return;
|
---|
161 |
|
---|
162 | Series solutionSeries = new Series(solution.Name);
|
---|
163 | solutionSeries.Tag = solution;
|
---|
164 | solutionSeries.ChartType = SeriesChartType.FastLine;
|
---|
165 | var residuals = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution));
|
---|
166 |
|
---|
167 | var maxValue = residuals.Max();
|
---|
168 | if (maxValue >= chart.ChartAreas[0].AxisX.Maximum) {
|
---|
169 | double scale = Math.Pow(10, Math.Floor(Math.Log10(maxValue)));
|
---|
170 | var maximum = scale * (1 + (int)(maxValue / scale));
|
---|
171 | chart.ChartAreas[0].AxisX.Maximum = maximum;
|
---|
172 | chart.ChartAreas[0].CursorX.Interval = residuals.Min() / 100;
|
---|
173 | }
|
---|
174 |
|
---|
175 | UpdateSeries(residuals, solutionSeries);
|
---|
176 |
|
---|
177 | solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries);
|
---|
178 | solutionSeries.LegendToolTip = "Double-click to open model";
|
---|
179 | chart.Series.Add(solutionSeries);
|
---|
180 | }
|
---|
181 |
|
---|
182 | protected void UpdateSeries(List<double> residuals, Series series) {
|
---|
183 | series.Points.Clear();
|
---|
184 | residuals.Sort();
|
---|
185 | if (!residuals.Any() || residuals.All(double.IsNaN)) return;
|
---|
186 |
|
---|
187 | series.Points.AddXY(0, 0);
|
---|
188 | for (int i = 0; i < residuals.Count; i++) {
|
---|
189 | var point = new DataPoint();
|
---|
190 | if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) {
|
---|
191 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
192 | point.YValues[0] = ((double)i) / residuals.Count;
|
---|
193 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
194 | series.Points.Add(point);
|
---|
195 | break;
|
---|
196 | }
|
---|
197 |
|
---|
198 | point.XValue = residuals[i];
|
---|
199 | point.YValues[0] = ((double)i + 1) / residuals.Count;
|
---|
200 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
201 | series.Points.Add(point);
|
---|
202 | }
|
---|
203 |
|
---|
204 | if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) {
|
---|
205 | var point = new DataPoint();
|
---|
206 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
207 | point.YValues[0] = 1;
|
---|
208 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
209 | series.Points.Add(point);
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | protected IEnumerable<double> GetOriginalValues() {
|
---|
214 | IEnumerable<double> originalValues;
|
---|
215 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
216 | case TrainingSamples:
|
---|
217 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
|
---|
218 | break;
|
---|
219 | case TestSamples:
|
---|
220 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
|
---|
221 | break;
|
---|
222 | case AllSamples:
|
---|
223 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable);
|
---|
224 | break;
|
---|
225 | default:
|
---|
226 | throw new NotSupportedException();
|
---|
227 | }
|
---|
228 | return originalValues;
|
---|
229 | }
|
---|
230 |
|
---|
231 | protected IEnumerable<double> GetEstimatedValues(IRegressionSolution solution) {
|
---|
232 | IEnumerable<double> estimatedValues;
|
---|
233 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
234 | case TrainingSamples:
|
---|
235 | estimatedValues = solution.EstimatedTrainingValues;
|
---|
236 | break;
|
---|
237 | case TestSamples:
|
---|
238 | estimatedValues = solution.EstimatedTestValues;
|
---|
239 | break;
|
---|
240 | case AllSamples:
|
---|
241 | estimatedValues = solution.EstimatedValues;
|
---|
242 | break;
|
---|
243 | default:
|
---|
244 | throw new NotSupportedException();
|
---|
245 | }
|
---|
246 | return estimatedValues;
|
---|
247 | }
|
---|
248 |
|
---|
249 | protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
|
---|
250 | switch (residualComboBox.SelectedItem.ToString()) {
|
---|
251 | case "Absolute error": return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y)).ToList();
|
---|
252 | case "Squared error": return originalValues.Zip(estimatedValues, (x, y) => (x - y) * (x - y)).ToList();
|
---|
253 | case "Relative error": return originalValues.Zip(estimatedValues, (x, y) => x.IsAlmost(0.0) ? -1 : Math.Abs((x - y) / x))
|
---|
254 | .Where(x => x > 0) // remove entries where the original value is 0
|
---|
255 | .ToList();
|
---|
256 | default: throw new NotSupportedException();
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 | private double CalculateAreaOverCurve(Series series) {
|
---|
261 | if (series.Points.Count < 1) return 0;
|
---|
262 |
|
---|
263 | double auc = 0.0;
|
---|
264 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
265 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
266 | double y1 = 1 - series.Points[i - 1].YValues[0];
|
---|
267 | double y2 = 1 - series.Points[i].YValues[0];
|
---|
268 |
|
---|
269 | auc += (y1 + y2) * width / 2;
|
---|
270 | }
|
---|
271 |
|
---|
272 | return auc;
|
---|
273 | }
|
---|
274 |
|
---|
275 | protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
276 | if (InvokeRequired) Invoke((Action<object, EventArgs>)cmbSamples_SelectedIndexChanged, sender, e);
|
---|
277 | else UpdateChart();
|
---|
278 | }
|
---|
279 |
|
---|
280 | private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
|
---|
281 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
282 | if (result.ChartElementType != ChartElementType.LegendItem) return;
|
---|
283 |
|
---|
284 | MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag);
|
---|
285 | }
|
---|
286 |
|
---|
287 | protected virtual IEnumerable<IRegressionSolution> CreateBaselineSolutions() {
|
---|
288 | yield return CreateConstantSolution();
|
---|
289 | yield return CreateLinearSolution();
|
---|
290 | }
|
---|
291 |
|
---|
292 | private IRegressionSolution CreateConstantSolution() {
|
---|
293 | double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
294 | var model = new ConstantModel(averageTrainingTarget);
|
---|
295 | var solution = model.CreateRegressionSolution(ProblemData);
|
---|
296 | solution.Name = "Baseline (constant)";
|
---|
297 | return solution;
|
---|
298 | }
|
---|
299 | private IRegressionSolution CreateLinearSolution() {
|
---|
300 | double rmsError, cvRmsError;
|
---|
301 | var solution = LinearRegression.CreateLinearRegressionSolution((IRegressionProblemData)ProblemData.Clone(), out rmsError, out cvRmsError);
|
---|
302 | solution.Name = "Baseline (linear)";
|
---|
303 | return solution;
|
---|
304 | }
|
---|
305 |
|
---|
306 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
307 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
308 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
309 | Cursor = Cursors.Hand;
|
---|
310 | } else {
|
---|
311 | Cursor = Cursors.Default;
|
---|
312 | }
|
---|
313 | }
|
---|
314 |
|
---|
315 | private void chart_DragDrop(object sender, DragEventArgs e) {
|
---|
316 | if (e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) {
|
---|
317 |
|
---|
318 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
319 | var dataAsRegressionSolution = data as IRegressionSolution;
|
---|
320 | var dataAsResult = data as IResult;
|
---|
321 |
|
---|
322 | if (dataAsRegressionSolution != null) {
|
---|
323 | solutions.Add((IRegressionSolution)dataAsRegressionSolution.Clone());
|
---|
324 | } else if (dataAsResult != null && dataAsResult.Value is IRegressionSolution) {
|
---|
325 | solutions.Add((IRegressionSolution)dataAsResult.Value.Clone());
|
---|
326 | }
|
---|
327 |
|
---|
328 | UpdateChart();
|
---|
329 | }
|
---|
330 | }
|
---|
331 |
|
---|
332 | private void chart_DragEnter(object sender, DragEventArgs e) {
|
---|
333 | e.Effect = DragDropEffects.None;
|
---|
334 | if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
|
---|
335 |
|
---|
336 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
337 | var dataAsRegressionSolution = data as IRegressionSolution;
|
---|
338 | var dataAsResult = data as IResult;
|
---|
339 |
|
---|
340 | if (!ReadOnly &&
|
---|
341 | (dataAsRegressionSolution != null || (dataAsResult != null && dataAsResult.Value is IRegressionSolution))) {
|
---|
342 | e.Effect = DragDropEffects.Copy;
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | private void residualComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
347 | UpdateChart();
|
---|
348 | }
|
---|
349 | }
|
---|
350 | }
|
---|