Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2701_MemPRAlgorithm/HeuristicLab.Problems.Binary/3.3/BinaryKnapsackProblem.cs @ 16724

Last change on this file since 16724 was 14420, checked in by abeham, 8 years ago

#2708: added binary version of mempr with new concepts of scope in basic alg

File size: 4.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.BinaryVectorEncoding;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Problems.Binary {
31  [Item("Binary Knapsack Problem (BKSP)", "Represents a problem whose objective is to maximize the number of true values.")]
32  [Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 999)]
33  [StorableClass]
34  public class BinaryKnapsackProblem : BinaryProblem {
35    public override bool Maximization {
36      get { return true; }
37    }
38
39    #region Parameter Properties
40    public ValueParameter<IntValue> KnapsackCapacityParameter {
41      get { return (ValueParameter<IntValue>)Parameters["KnapsackCapacity"]; }
42    }
43    public ValueParameter<IntArray> WeightsParameter {
44      get { return (ValueParameter<IntArray>)Parameters["Weights"]; }
45    }
46    public ValueParameter<IntArray> ValuesParameter {
47      get { return (ValueParameter<IntArray>)Parameters["Values"]; }
48    }
49    #endregion
50
51    #region Properties
52    public IntValue KnapsackCapacity {
53      get { return KnapsackCapacityParameter.Value; }
54      set { KnapsackCapacityParameter.Value = value; }
55    }
56    public IntArray Weights {
57      get { return WeightsParameter.Value; }
58      set { WeightsParameter.Value = value; }
59    }
60    public IntArray Values {
61      get { return ValuesParameter.Value; }
62      set { ValuesParameter.Value = value; }
63    }
64    #endregion
65
66    [StorableConstructor]
67    protected BinaryKnapsackProblem(bool deserializing) : base(deserializing) { }
68    protected BinaryKnapsackProblem(BinaryKnapsackProblem original, Cloner cloner) : base(original, cloner) { }
69    public BinaryKnapsackProblem()
70      : base() {
71      Encoding.Length = 5;
72      Parameters.Add(new ValueParameter<IntValue>("KnapsackCapacity", "Capacity of the Knapsack.", new IntValue(0)));
73      Parameters.Add(new ValueParameter<IntArray>("Weights", "The weights of the items.", new IntArray(5)));
74      Parameters.Add(new ValueParameter<IntArray>("Values", "The values of the items.", new IntArray(5)));
75
76      InitializeRandomKnapsackInstance();
77    }
78
79    public override IDeepCloneable Clone(Cloner cloner) {
80      return new BinaryKnapsackProblem(this, cloner);
81    }
82
83    public override double Evaluate(BinaryVector vector, IRandom random) {
84      var itemWeights = Weights;
85      var itemValues = Values;
86      var weight = 0;
87      var value = 0;
88      for (var i = 0; i < vector.Length; i++) {
89        if (!vector[i]) continue;
90        weight += itemWeights[i];
91        value += itemValues[i];
92      }
93      var cap = KnapsackCapacity.Value;
94      // assuming only positive values in the knapsack, maximizing in negative
95      // range makes solutions feasible, in positive range increases their value
96      return weight <= cap ? value : cap - weight;
97    }
98
99    private void InitializeRandomKnapsackInstance() {
100      var rand = new System.Random();
101
102      var itemCount = (int)Math.Pow(2, rand.Next(5, 10));
103      Weights = new IntArray(itemCount);
104      Values = new IntArray(itemCount);
105
106      double totalWeight = 0;
107
108      for (var i = 0; i < itemCount; i++) {
109        var value = rand.Next(1, 50);
110        var weight = rand.Next(1, 50);
111
112        Values[i] = value;
113        Weights[i] = weight;
114        totalWeight += weight;
115      }
116     
117      KnapsackCapacity = new IntValue((int)Math.Round(0.6 * totalWeight));
118      Encoding.Length = itemCount;
119    }
120  }
121}
Note: See TracBrowser for help on using the repository browser.