1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Algorithms.MemPR.Util;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.LinearLinkageEncoding;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.MemPR.Grouping.LocalSearch {
|
---|
31 | public static class ExhaustiveLocalSearch {
|
---|
32 | public static Tuple<int, int> Optimize(IRandom random, LinearLinkage solution, ref double quality, bool maximization, Func<LinearLinkage, CancellationToken, double> eval, CancellationToken token, bool[] subspace = null) {
|
---|
33 | var evaluations = 0;
|
---|
34 | if (double.IsNaN(quality)) {
|
---|
35 | quality = eval(solution, token);
|
---|
36 | evaluations++;
|
---|
37 | }
|
---|
38 | var steps = 0;
|
---|
39 | var lleb = solution.ToBackLinks();
|
---|
40 | for (var iter = 0; iter < int.MaxValue; iter++) {
|
---|
41 | var change = false;
|
---|
42 | var groupItems = new List<int>();
|
---|
43 | for (var i = 0; i < solution.Length; i++) {
|
---|
44 | foreach (var move in MoveGenerator.GenerateForItem(i, groupItems, solution, lleb).ToList()) {
|
---|
45 | move.Apply(solution);
|
---|
46 | var moveF = eval(solution, token);
|
---|
47 | evaluations++;
|
---|
48 | if (FitnessComparer.IsBetter(maximization, moveF, quality)) {
|
---|
49 | move.ApplyToLLEb(lleb);
|
---|
50 | steps++;
|
---|
51 | quality = moveF;
|
---|
52 | change = true;
|
---|
53 | break;
|
---|
54 | } else {
|
---|
55 | move.Undo(solution);
|
---|
56 | }
|
---|
57 | if (token.IsCancellationRequested) break;
|
---|
58 | }
|
---|
59 | if (lleb[i] != i)
|
---|
60 | groupItems.Remove(lleb[i]);
|
---|
61 | groupItems.Add(i);
|
---|
62 | if (token.IsCancellationRequested) break;
|
---|
63 | }
|
---|
64 | if (!change || token.IsCancellationRequested) break;
|
---|
65 | }
|
---|
66 |
|
---|
67 | return Tuple.Create(evaluations, steps);
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static Tuple<int, int> OptimizeSwap(IRandom random, LinearLinkage solution, ref double quality, bool maximization, Func<LinearLinkage, IRandom, double> eval, CancellationToken token) {
|
---|
71 | var evaluations = 0;
|
---|
72 | var current = solution;
|
---|
73 | if (double.IsNaN(quality)) {
|
---|
74 | quality = eval(current, random);
|
---|
75 | evaluations++;
|
---|
76 | }
|
---|
77 | var groups = current.GetGroups().ToList();
|
---|
78 | var exclude = new bool[groups.Count, groups.Count];
|
---|
79 | var steps = 0;
|
---|
80 | for (var iter = 0; iter < int.MaxValue; iter++) {
|
---|
81 | var change = false;
|
---|
82 | for (var i = 0; i < groups.Count - 1; i++) {
|
---|
83 | for (var j = i + 1; j < groups.Count; j++) {
|
---|
84 | if (exclude[i, j]) continue;
|
---|
85 | var groupsChanged = false;
|
---|
86 | if (groups[i].Count == 1 && groups[j].Count == 1) continue; // groups are anonymous, swap has no effect
|
---|
87 | for (var x = 0; x < groups[i].Count; x++) {
|
---|
88 | for (var y = 0; y < groups[j].Count; y++) {
|
---|
89 | var a = groups[i][x];
|
---|
90 | var b = groups[j][y];
|
---|
91 | groups[i][x] = b;
|
---|
92 | groups[j][y] = a;
|
---|
93 | current.SetGroups(groups);
|
---|
94 | var moveF = eval(current, random);
|
---|
95 | evaluations++;
|
---|
96 | if (FitnessComparer.IsBetter(maximization, moveF, quality)) {
|
---|
97 | steps++;
|
---|
98 | quality = moveF;
|
---|
99 | groupsChanged = true;
|
---|
100 | } else {
|
---|
101 | // undo
|
---|
102 | groups[i][x] = a;
|
---|
103 | groups[j][y] = b;
|
---|
104 | current.SetGroups(groups);
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|
108 | if (!groupsChanged) {
|
---|
109 | exclude[i, j] = true;
|
---|
110 | } else {
|
---|
111 | change = true;
|
---|
112 | for (var k = 0; k < groups.Count; k++) {
|
---|
113 | exclude[k, j] = false;
|
---|
114 | exclude[i, k] = false;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | if (token.IsCancellationRequested) break;
|
---|
118 | }
|
---|
119 | if (token.IsCancellationRequested) break;
|
---|
120 | }
|
---|
121 | if (!change || token.IsCancellationRequested) break;
|
---|
122 | }
|
---|
123 | return Tuple.Create(evaluations, steps);
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|