Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2701_MemPRAlgorithm/HeuristicLab.Algorithms.DataAnalysis/3.4/MctsSymbolicRegression/MctsSymbolicRegressionAlgorithm.cs @ 16189

Last change on this file since 16189 was 14562, checked in by abeham, 8 years ago

#2701: Updated branch to trunk

File size: 15.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using System.Runtime.CompilerServices;
25using System.Threading;
26using HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression.Policies;
27using HeuristicLab.Analysis;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Data;
31using HeuristicLab.Optimization;
32using HeuristicLab.Parameters;
33using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
34using HeuristicLab.Problems.DataAnalysis;
35
36namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression {
37  [Item("MCTS Symbolic Regression", "Monte carlo tree search for symbolic regression. Useful mainly as a base learner in gradient boosting.")]
38  [StorableClass]
39  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 250)]
40  public class MctsSymbolicRegressionAlgorithm : FixedDataAnalysisAlgorithm<IRegressionProblem> {
41
42    #region ParameterNames
43    private const string IterationsParameterName = "Iterations";
44    private const string MaxVariablesParameterName = "Maximum variables";
45    private const string ScaleVariablesParameterName = "Scale variables";
46    private const string AllowedFactorsParameterName = "Allowed factors";
47    private const string ConstantOptimizationIterationsParameterName = "Iterations (constant optimization)";
48    private const string PolicyParameterName = "Policy";
49    private const string SeedParameterName = "Seed";
50    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
51    private const string UpdateIntervalParameterName = "UpdateInterval";
52    private const string CreateSolutionParameterName = "CreateSolution";
53    private const string PunishmentFactorParameterName = "PunishmentFactor";
54
55    private const string VariableProductFactorName = "product(xi)";
56    private const string ExpFactorName = "exp(c * product(xi))";
57    private const string LogFactorName = "log(c + sum(c*product(xi))";
58    private const string InvFactorName = "1 / (1 + sum(c*product(xi))";
59    private const string FactorSumsName = "sum of multiple terms";
60    #endregion
61
62    #region ParameterProperties
63    public IFixedValueParameter<IntValue> IterationsParameter {
64      get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
65    }
66    public IFixedValueParameter<IntValue> MaxVariableReferencesParameter {
67      get { return (IFixedValueParameter<IntValue>)Parameters[MaxVariablesParameterName]; }
68    }
69    public IFixedValueParameter<BoolValue> ScaleVariablesParameter {
70      get { return (IFixedValueParameter<BoolValue>)Parameters[ScaleVariablesParameterName]; }
71    }
72    public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
73      get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
74    }
75    public IValueParameter<IPolicy> PolicyParameter {
76      get { return (IValueParameter<IPolicy>)Parameters[PolicyParameterName]; }
77    }
78    public IFixedValueParameter<DoubleValue> PunishmentFactorParameter {
79      get { return (IFixedValueParameter<DoubleValue>)Parameters[PunishmentFactorParameterName]; }
80    }
81    public IValueParameter<ICheckedItemList<StringValue>> AllowedFactorsParameter {
82      get { return (IValueParameter<ICheckedItemList<StringValue>>)Parameters[AllowedFactorsParameterName]; }
83    }
84    public IFixedValueParameter<IntValue> SeedParameter {
85      get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
86    }
87    public FixedValueParameter<BoolValue> SetSeedRandomlyParameter {
88      get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
89    }
90    public IFixedValueParameter<IntValue> UpdateIntervalParameter {
91      get { return (IFixedValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; }
92    }
93    public IFixedValueParameter<BoolValue> CreateSolutionParameter {
94      get { return (IFixedValueParameter<BoolValue>)Parameters[CreateSolutionParameterName]; }
95    }
96    #endregion
97
98    #region Properties
99    public int Iterations {
100      get { return IterationsParameter.Value.Value; }
101      set { IterationsParameter.Value.Value = value; }
102    }
103    public int Seed {
104      get { return SeedParameter.Value.Value; }
105      set { SeedParameter.Value.Value = value; }
106    }
107    public bool SetSeedRandomly {
108      get { return SetSeedRandomlyParameter.Value.Value; }
109      set { SetSeedRandomlyParameter.Value.Value = value; }
110    }
111    public int MaxVariableReferences {
112      get { return MaxVariableReferencesParameter.Value.Value; }
113      set { MaxVariableReferencesParameter.Value.Value = value; }
114    }
115    public IPolicy Policy {
116      get { return PolicyParameter.Value; }
117      set { PolicyParameter.Value = value; }
118    }
119    public double PunishmentFactor {
120      get { return PunishmentFactorParameter.Value.Value; }
121      set { PunishmentFactorParameter.Value.Value = value; }
122    }
123    public ICheckedItemList<StringValue> AllowedFactors {
124      get { return AllowedFactorsParameter.Value; }
125    }
126    public int ConstantOptimizationIterations {
127      get { return ConstantOptimizationIterationsParameter.Value.Value; }
128      set { ConstantOptimizationIterationsParameter.Value.Value = value; }
129    }
130    public bool ScaleVariables {
131      get { return ScaleVariablesParameter.Value.Value; }
132      set { ScaleVariablesParameter.Value.Value = value; }
133    }
134    public bool CreateSolution {
135      get { return CreateSolutionParameter.Value.Value; }
136      set { CreateSolutionParameter.Value.Value = value; }
137    }
138    #endregion
139
140    [StorableConstructor]
141    protected MctsSymbolicRegressionAlgorithm(bool deserializing) : base(deserializing) { }
142
143    protected MctsSymbolicRegressionAlgorithm(MctsSymbolicRegressionAlgorithm original, Cloner cloner)
144      : base(original, cloner) {
145    }
146
147    public override IDeepCloneable Clone(Cloner cloner) {
148      return new MctsSymbolicRegressionAlgorithm(this, cloner);
149    }
150
151    public MctsSymbolicRegressionAlgorithm() {
152      Problem = new RegressionProblem(); // default problem
153
154      var defaultFactorsList = new CheckedItemList<StringValue>(
155        new string[] { VariableProductFactorName, ExpFactorName, LogFactorName, InvFactorName, FactorSumsName }
156        .Select(s => new StringValue(s).AsReadOnly())
157        ).AsReadOnly();
158      defaultFactorsList.SetItemCheckedState(defaultFactorsList.First(s => s.Value == FactorSumsName), false);
159
160      Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName,
161        "Number of iterations", new IntValue(100000)));
162      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName,
163        "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
164      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName,
165        "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
166      Parameters.Add(new FixedValueParameter<IntValue>(MaxVariablesParameterName,
167        "Maximal number of variables references in the symbolic regression models (multiple usages of the same variable are counted)", new IntValue(5)));
168      // Parameters.Add(new FixedValueParameter<DoubleValue>(CParameterName,
169      //   "Balancing parameter in UCT formula (0 < c < 1000). Small values: greedy search. Large values: enumeration. Default: 1.0", new DoubleValue(1.0)));
170      Parameters.Add(new ValueParameter<IPolicy>(PolicyParameterName,
171        "The policy to use for selecting nodes in MCTS (e.g. Ucb)", new Ucb()));
172      PolicyParameter.Hidden = true;
173      Parameters.Add(new ValueParameter<ICheckedItemList<StringValue>>(AllowedFactorsParameterName,
174        "Choose which expressions are allowed as factors in the model.", defaultFactorsList));
175
176      Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName,
177        "Number of iterations for constant optimization. A small number of iterations should be sufficient for most models. " +
178        "Set to 0 to disable constants optimization.", new IntValue(10)));
179      Parameters.Add(new FixedValueParameter<BoolValue>(ScaleVariablesParameterName,
180        "Set to true to scale all input variables to the range [0..1]", new BoolValue(false)));
181      Parameters[ScaleVariablesParameterName].Hidden = true;
182      Parameters.Add(new FixedValueParameter<DoubleValue>(PunishmentFactorParameterName, "Estimations of models can be bounded. The estimation limits are calculated in the following way (lb = mean(y) - punishmentFactor*range(y), ub = mean(y) + punishmentFactor*range(y))", new DoubleValue(10)));
183      Parameters[PunishmentFactorParameterName].Hidden = true;
184      Parameters.Add(new FixedValueParameter<IntValue>(UpdateIntervalParameterName,
185        "Number of iterations until the results are updated", new IntValue(100)));
186      Parameters[UpdateIntervalParameterName].Hidden = true;
187      Parameters.Add(new FixedValueParameter<BoolValue>(CreateSolutionParameterName,
188        "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true)));
189      Parameters[CreateSolutionParameterName].Hidden = true;
190    }
191
192    [StorableHook(HookType.AfterDeserialization)]
193    private void AfterDeserialization() {
194    }
195
196    protected override void Run(CancellationToken cancellationToken) {
197      // Set up the algorithm
198      if (SetSeedRandomly) Seed = new System.Random().Next();
199
200      // Set up the results display
201      var iterations = new IntValue(0);
202      Results.Add(new Result("Iterations", iterations));
203
204      var bestSolutionIteration = new IntValue(0);
205      Results.Add(new Result("Best solution iteration", bestSolutionIteration));
206
207      var table = new DataTable("Qualities");
208      table.Rows.Add(new DataRow("Best quality"));
209      table.Rows.Add(new DataRow("Current best quality"));
210      table.Rows.Add(new DataRow("Average quality"));
211      Results.Add(new Result("Qualities", table));
212
213      var bestQuality = new DoubleValue();
214      Results.Add(new Result("Best quality", bestQuality));
215
216      var curQuality = new DoubleValue();
217      Results.Add(new Result("Current best quality", curQuality));
218
219      var avgQuality = new DoubleValue();
220      Results.Add(new Result("Average quality", avgQuality));
221
222      var totalRollouts = new IntValue();
223      Results.Add(new Result("Total rollouts", totalRollouts));
224      var effRollouts = new IntValue();
225      Results.Add(new Result("Effective rollouts", effRollouts));
226      var funcEvals = new IntValue();
227      Results.Add(new Result("Function evaluations", funcEvals));
228      var gradEvals = new IntValue();
229      Results.Add(new Result("Gradient evaluations", gradEvals));
230
231
232      // same as in SymbolicRegressionSingleObjectiveProblem
233      var y = Problem.ProblemData.Dataset.GetDoubleValues(Problem.ProblemData.TargetVariable,
234        Problem.ProblemData.TrainingIndices);
235      var avgY = y.Average();
236      var minY = y.Min();
237      var maxY = y.Max();
238      var range = maxY - minY;
239      var lowerLimit = avgY - PunishmentFactor * range;
240      var upperLimit = avgY + PunishmentFactor * range;
241
242      // init
243      var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
244      if (!AllowedFactors.CheckedItems.Any()) throw new ArgumentException("At least on type of factor must be allowed");
245      var state = MctsSymbolicRegressionStatic.CreateState(problemData, (uint)Seed, MaxVariableReferences, ScaleVariables, ConstantOptimizationIterations,
246        Policy,
247        lowerLimit, upperLimit,
248        allowProdOfVars: AllowedFactors.CheckedItems.Any(s => s.Value.Value == VariableProductFactorName),
249        allowExp: AllowedFactors.CheckedItems.Any(s => s.Value.Value == ExpFactorName),
250        allowLog: AllowedFactors.CheckedItems.Any(s => s.Value.Value == LogFactorName),
251        allowInv: AllowedFactors.CheckedItems.Any(s => s.Value.Value == InvFactorName),
252        allowMultipleTerms: AllowedFactors.CheckedItems.Any(s => s.Value.Value == FactorSumsName)
253        );
254
255      var updateInterval = UpdateIntervalParameter.Value.Value;
256      double sumQ = 0.0;
257      double bestQ = 0.0;
258      double curBestQ = 0.0;
259      int n = 0;
260      // Loop until iteration limit reached or canceled.
261      for (int i = 0; i < Iterations && !state.Done; i++) {
262        cancellationToken.ThrowIfCancellationRequested();
263
264        var q = MctsSymbolicRegressionStatic.MakeStep(state);
265        sumQ += q; // sum of qs in the last updateinterval iterations
266        curBestQ = Math.Max(q, curBestQ); // the best q in the last updateinterval iterations
267        bestQ = Math.Max(q, bestQ); // the best q overall
268        n++;
269        // iteration results
270        if (n == updateInterval) {
271          if (bestQ > bestQuality.Value) {
272            bestSolutionIteration.Value = i;
273          }
274          bestQuality.Value = bestQ;
275          curQuality.Value = curBestQ;
276          avgQuality.Value = sumQ / n;
277          sumQ = 0.0;
278          curBestQ = 0.0;
279
280          funcEvals.Value = state.FuncEvaluations;
281          gradEvals.Value = state.GradEvaluations;
282          effRollouts.Value = state.EffectiveRollouts;
283          totalRollouts.Value = state.TotalRollouts;
284
285          table.Rows["Best quality"].Values.Add(bestQuality.Value);
286          table.Rows["Current best quality"].Values.Add(curQuality.Value);
287          table.Rows["Average quality"].Values.Add(avgQuality.Value);
288          iterations.Value += n;
289          n = 0;
290        }
291      }
292
293      // final results
294      if (n > 0) {
295        if (bestQ > bestQuality.Value) {
296          bestSolutionIteration.Value = iterations.Value + n;
297        }
298        bestQuality.Value = bestQ;
299        curQuality.Value = curBestQ;
300        avgQuality.Value = sumQ / n;
301
302        funcEvals.Value = state.FuncEvaluations;
303        gradEvals.Value = state.GradEvaluations;
304        effRollouts.Value = state.EffectiveRollouts;
305        totalRollouts.Value = state.TotalRollouts;
306
307        table.Rows["Best quality"].Values.Add(bestQuality.Value);
308        table.Rows["Current best quality"].Values.Add(curQuality.Value);
309        table.Rows["Average quality"].Values.Add(avgQuality.Value);
310        iterations.Value = iterations.Value + n;
311
312      }
313
314
315      Results.Add(new Result("Best solution quality (train)", new DoubleValue(state.BestSolutionTrainingQuality)));
316      Results.Add(new Result("Best solution quality (test)", new DoubleValue(state.BestSolutionTestQuality)));
317
318
319      // produce solution
320      if (CreateSolution) {
321        var model = state.BestModel;
322
323        // otherwise we produce a regression solution
324        Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
325      }
326    }
327  }
328}
Note: See TracBrowser for help on using the repository browser.