1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
34 | /// <summary>
|
---|
35 | /// 1R classification algorithm.
|
---|
36 | /// </summary>
|
---|
37 | [Item("OneR Classification", "A simple classification algorithm the searches the best single-variable split (does not support categorical features correctly). See R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91.")]
|
---|
38 | [StorableClass]
|
---|
39 | public sealed class OneR : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
40 |
|
---|
41 | public IValueParameter<IntValue> MinBucketSizeParameter {
|
---|
42 | get { return (IValueParameter<IntValue>)Parameters["MinBucketSize"]; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | [StorableConstructor]
|
---|
46 | private OneR(bool deserializing) : base(deserializing) { }
|
---|
47 |
|
---|
48 | private OneR(OneR original, Cloner cloner)
|
---|
49 | : base(original, cloner) { }
|
---|
50 |
|
---|
51 | public OneR()
|
---|
52 | : base() {
|
---|
53 | Parameters.Add(new ValueParameter<IntValue>("MinBucketSize", "Minimum size of a bucket for numerical values. (Except for the rightmost bucket)", new IntValue(6)));
|
---|
54 | Problem = new ClassificationProblem();
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new OneR(this, cloner);
|
---|
59 | }
|
---|
60 |
|
---|
61 | protected override void Run(CancellationToken cancellationToken) {
|
---|
62 | var solution = CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value);
|
---|
63 | Results.Add(new Result("OneR solution", "The 1R classifier.", solution));
|
---|
64 | }
|
---|
65 |
|
---|
66 | public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize = 6) {
|
---|
67 | var bestClassified = 0;
|
---|
68 | List<Split> bestSplits = null;
|
---|
69 | string bestVariable = string.Empty;
|
---|
70 | double bestMissingValuesClass = double.NaN;
|
---|
71 | var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
|
---|
72 |
|
---|
73 | foreach (var variable in problemData.AllowedInputVariables) {
|
---|
74 | var inputValues = problemData.Dataset.GetDoubleValues(variable, problemData.TrainingIndices);
|
---|
75 | var samples = inputValues.Zip(classValues, (i, v) => new Sample(i, v)).OrderBy(s => s.inputValue);
|
---|
76 |
|
---|
77 | var missingValuesDistribution = samples.Where(s => double.IsNaN(s.inputValue)).GroupBy(s => s.classValue).ToDictionary(s => s.Key, s => s.Count()).MaxItems(s => s.Value).FirstOrDefault();
|
---|
78 |
|
---|
79 | //calculate class distributions for all distinct inputValues
|
---|
80 | List<Dictionary<double, int>> classDistributions = new List<Dictionary<double, int>>();
|
---|
81 | List<double> thresholds = new List<double>();
|
---|
82 | double lastValue = double.NaN;
|
---|
83 | foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) {
|
---|
84 | if (sample.inputValue > lastValue || double.IsNaN(lastValue)) {
|
---|
85 | if (!double.IsNaN(lastValue)) thresholds.Add((lastValue + sample.inputValue) / 2);
|
---|
86 | lastValue = sample.inputValue;
|
---|
87 | classDistributions.Add(new Dictionary<double, int>());
|
---|
88 | foreach (var classValue in problemData.ClassValues)
|
---|
89 | classDistributions[classDistributions.Count - 1][classValue] = 0;
|
---|
90 |
|
---|
91 | }
|
---|
92 | classDistributions[classDistributions.Count - 1][sample.classValue]++;
|
---|
93 | }
|
---|
94 | thresholds.Add(double.PositiveInfinity);
|
---|
95 |
|
---|
96 | var distribution = classDistributions[0];
|
---|
97 | var threshold = thresholds[0];
|
---|
98 | var splits = new List<Split>();
|
---|
99 |
|
---|
100 | for (int i = 1; i < classDistributions.Count; i++) {
|
---|
101 | var samplesInSplit = distribution.Max(d => d.Value);
|
---|
102 | //join splits if there are too few samples in the split or the distributions has the same maximum class value as the current split
|
---|
103 | if (samplesInSplit < minBucketSize ||
|
---|
104 | classDistributions[i].MaxItems(d => d.Value).Select(d => d.Key).Contains(
|
---|
105 | distribution.MaxItems(d => d.Value).Select(d => d.Key).First())) {
|
---|
106 | foreach (var classValue in classDistributions[i])
|
---|
107 | distribution[classValue.Key] += classValue.Value;
|
---|
108 | threshold = thresholds[i];
|
---|
109 | } else {
|
---|
110 | splits.Add(new Split(threshold, distribution.MaxItems(d => d.Value).Select(d => d.Key).First()));
|
---|
111 | distribution = classDistributions[i];
|
---|
112 | threshold = thresholds[i];
|
---|
113 | }
|
---|
114 | }
|
---|
115 | splits.Add(new Split(double.PositiveInfinity, distribution.MaxItems(d => d.Value).Select(d => d.Key).First()));
|
---|
116 |
|
---|
117 | int correctClassified = 0;
|
---|
118 | int splitIndex = 0;
|
---|
119 | foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) {
|
---|
120 | while (sample.inputValue >= splits[splitIndex].thresholdValue)
|
---|
121 | splitIndex++;
|
---|
122 | correctClassified += sample.classValue == splits[splitIndex].classValue ? 1 : 0;
|
---|
123 | }
|
---|
124 | correctClassified += missingValuesDistribution.Value;
|
---|
125 |
|
---|
126 | if (correctClassified > bestClassified) {
|
---|
127 | bestClassified = correctClassified;
|
---|
128 | bestSplits = splits;
|
---|
129 | bestVariable = variable;
|
---|
130 | bestMissingValuesClass = missingValuesDistribution.Value == 0 ? double.NaN : missingValuesDistribution.Key;
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | //remove neighboring splits with the same class value
|
---|
135 | for (int i = 0; i < bestSplits.Count - 1; i++) {
|
---|
136 | if (bestSplits[i].classValue == bestSplits[i + 1].classValue) {
|
---|
137 | bestSplits.Remove(bestSplits[i]);
|
---|
138 | i--;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | var model = new OneRClassificationModel(problemData.TargetVariable, bestVariable, bestSplits.Select(s => s.thresholdValue).ToArray(), bestSplits.Select(s => s.classValue).ToArray(), bestMissingValuesClass);
|
---|
143 | var solution = new OneRClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
144 |
|
---|
145 | return solution;
|
---|
146 | }
|
---|
147 |
|
---|
148 | #region helper classes
|
---|
149 | private class Split {
|
---|
150 | public double thresholdValue;
|
---|
151 | public double classValue;
|
---|
152 |
|
---|
153 | public Split(double thresholdValue, double classValue) {
|
---|
154 | this.thresholdValue = thresholdValue;
|
---|
155 | this.classValue = classValue;
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | private class Sample {
|
---|
160 | public double inputValue;
|
---|
161 | public double classValue;
|
---|
162 |
|
---|
163 | public Sample(double inputValue, double classValue) {
|
---|
164 | this.inputValue = inputValue;
|
---|
165 | this.classValue = classValue;
|
---|
166 | }
|
---|
167 | }
|
---|
168 | #endregion
|
---|
169 | }
|
---|
170 | }
|
---|