Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2695_dataset-ids/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE/TSNEStatic.cs @ 17300

Last change on this file since 17300 was 15207, checked in by bwerth, 8 years ago

#2700 worked on TSNE (mostly removing unused code)

File size: 28.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21//Code is based on an implementation from Laurens van der Maaten
22
23/*
24*
25* Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
26* All rights reserved.
27*
28* Redistribution and use in source and binary forms, with or without
29* modification, are permitted provided that the following conditions are met:
30* 1. Redistributions of source code must retain the above copyright
31*    notice, this list of conditions and the following disclaimer.
32* 2. Redistributions in binary form must reproduce the above copyright
33*    notice, this list of conditions and the following disclaimer in the
34*    documentation and/or other materials provided with the distribution.
35* 3. All advertising materials mentioning features or use of this software
36*    must display the following acknowledgement:
37*    This product includes software developed by the Delft University of Technology.
38* 4. Neither the name of the Delft University of Technology nor the names of
39*    its contributors may be used to endorse or promote products derived from
40*    this software without specific prior written permission.
41*
42* THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
43* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
44* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
45* EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
47* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
48* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
49* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
50* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
51* OF SUCH DAMAGE.
52*
53*/
54#endregion
55
56using System;
57using System.Collections.Generic;
58using HeuristicLab.Collections;
59using HeuristicLab.Common;
60using HeuristicLab.Core;
61using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
62using HeuristicLab.Random;
63
64namespace HeuristicLab.Algorithms.DataAnalysis {
65  [StorableClass]
66  public class TSNEStatic<T> {
67
68    [StorableClass]
69    public sealed class TSNEState : DeepCloneable {
70      #region Storables
71      // initialized once
72      [Storable]
73      public IDistance<T> distance;
74      [Storable]
75      public IRandom random;
76      [Storable]
77      public double perplexity;
78      [Storable]
79      public bool exact;
80      [Storable]
81      public int noDatapoints;
82      [Storable]
83      public double finalMomentum;
84      [Storable]
85      public int momSwitchIter;
86      [Storable]
87      public int stopLyingIter;
88      [Storable]
89      public double theta;
90      [Storable]
91      public double eta;
92      [Storable]
93      public int newDimensions;
94
95      // for approximate version: sparse representation of similarity/distance matrix
96      [Storable]
97      public double[] valP; // similarity/distance
98      [Storable]
99      public int[] rowP; // row index
100      [Storable]
101      public int[] colP; // col index
102
103      // for exact version: dense representation of distance/similarity matrix
104      [Storable]
105      public double[,] p;
106
107      // mapped data
108      [Storable]
109      public double[,] newData;
110
111      [Storable]
112      public int iter;
113      [Storable]
114      public double currentMomentum;
115
116      // helper variables (updated in each iteration)
117      [Storable]
118      public double[,] gains;
119      [Storable]
120      public double[,] uY;
121      [Storable]
122      public double[,] dY;
123      #endregion
124
125      #region Constructors & Cloning
126      private TSNEState(TSNEState original, Cloner cloner) : base(original, cloner) {
127        distance = cloner.Clone(original.distance);
128        random = cloner.Clone(original.random);
129        perplexity = original.perplexity;
130        exact = original.exact;
131        noDatapoints = original.noDatapoints;
132        finalMomentum = original.finalMomentum;
133        momSwitchIter = original.momSwitchIter;
134        stopLyingIter = original.stopLyingIter;
135        theta = original.theta;
136        eta = original.eta;
137        newDimensions = original.newDimensions;
138        if (original.valP != null) {
139          valP = new double[original.valP.Length];
140          Array.Copy(original.valP, valP, valP.Length);
141        }
142        if (original.rowP != null) {
143          rowP = new int[original.rowP.Length];
144          Array.Copy(original.rowP, rowP, rowP.Length);
145        }
146        if (original.colP != null) {
147          colP = new int[original.colP.Length];
148          Array.Copy(original.colP, colP, colP.Length);
149        }
150        if (original.p != null) {
151          p = new double[original.p.GetLength(0), original.p.GetLength(1)];
152          Array.Copy(original.p, p, p.Length);
153        }
154        newData = new double[original.newData.GetLength(0), original.newData.GetLength(1)];
155        Array.Copy(original.newData, newData, newData.Length);
156        iter = original.iter;
157        currentMomentum = original.currentMomentum;
158        gains = new double[original.gains.GetLength(0), original.gains.GetLength(1)];
159        Array.Copy(original.gains, gains, gains.Length);
160        uY = new double[original.uY.GetLength(0), original.uY.GetLength(1)];
161        Array.Copy(original.uY, uY, uY.Length);
162        dY = new double[original.dY.GetLength(0), original.dY.GetLength(1)];
163        Array.Copy(original.dY, dY, dY.Length);
164      }
165
166      public override IDeepCloneable Clone(Cloner cloner) {
167        return new TSNEState(this, cloner);
168      }
169
170      [StorableConstructor]
171      public TSNEState(bool deserializing) { }
172      public TSNEState(T[] data, IDistance<T> distance, IRandom random, int newDimensions, double perplexity, double theta, int stopLyingIter, int momSwitchIter, double momentum, double finalMomentum, double eta) {
173        this.distance = distance;
174        this.random = random;
175        this.newDimensions = newDimensions;
176        this.perplexity = perplexity;
177        this.theta = theta;
178        this.stopLyingIter = stopLyingIter;
179        this.momSwitchIter = momSwitchIter;
180        currentMomentum = momentum;
181        this.finalMomentum = finalMomentum;
182        this.eta = eta;
183
184        // initialize
185        noDatapoints = data.Length;
186        if (noDatapoints - 1 < 3 * perplexity)
187          throw new ArgumentException("Perplexity too large for the number of data points!");
188
189        exact = Math.Abs(theta) < double.Epsilon;
190        newData = new double[noDatapoints, newDimensions];
191        dY = new double[noDatapoints, newDimensions];
192        uY = new double[noDatapoints, newDimensions];
193        gains = new double[noDatapoints, newDimensions];
194        for (var i = 0; i < noDatapoints; i++)
195          for (var j = 0; j < newDimensions; j++)
196            gains[i, j] = 1.0;
197
198        p = null;
199        rowP = null;
200        colP = null;
201        valP = null;
202
203        //Calculate Similarities
204        if (exact) p = CalculateExactSimilarites(data, distance, perplexity);
205        else CalculateApproximateSimilarities(data, distance, perplexity, out rowP, out colP, out valP);
206
207        // Lie about the P-values (factor is 4 in the MATLAB implementation)
208        if (exact) for (var i = 0; i < noDatapoints; i++) for (var j = 0; j < noDatapoints; j++) p[i, j] *= 12.0;
209        else for (var i = 0; i < rowP[noDatapoints]; i++) valP[i] *= 12.0;
210
211        // Initialize solution (randomly)
212        var rand = new NormalDistributedRandom(random, 0, 1);
213        for (var i = 0; i < noDatapoints; i++)
214          for (var j = 0; j < newDimensions; j++)
215            newData[i, j] = rand.NextDouble() * .0001;
216      }
217      #endregion
218
219      public double EvaluateError() {
220        return exact ?
221          EvaluateErrorExact(p, newData, noDatapoints, newDimensions) :
222          EvaluateErrorApproximate(rowP, colP, valP, newData, theta);
223      }
224
225      #region Helpers
226      private static void CalculateApproximateSimilarities(T[] data, IDistance<T> distance, double perplexity, out int[] rowP, out int[] colP, out double[] valP) {
227        // Compute asymmetric pairwise input similarities
228        ComputeGaussianPerplexity(data, distance, out rowP, out colP, out valP, perplexity, (int)(3 * perplexity));
229        // Symmetrize input similarities
230        int[] sRowP, symColP;
231        double[] sValP;
232        SymmetrizeMatrix(rowP, colP, valP, out sRowP, out symColP, out sValP);
233        rowP = sRowP;
234        colP = symColP;
235        valP = sValP;
236        var sumP = .0;
237        for (var i = 0; i < rowP[data.Length]; i++) sumP += valP[i];
238        for (var i = 0; i < rowP[data.Length]; i++) valP[i] /= sumP;
239      }
240
241      private static double[,] CalculateExactSimilarites(T[] data, IDistance<T> distance, double perplexity) {
242        // Compute similarities
243        var p = new double[data.Length, data.Length];
244        ComputeGaussianPerplexity(data, distance, p, perplexity);
245        // Symmetrize input similarities
246        for (var n = 0; n < data.Length; n++) {
247          for (var m = n + 1; m < data.Length; m++) {
248            p[n, m] += p[m, n];
249            p[m, n] = p[n, m];
250          }
251        }
252        var sumP = .0;
253        for (var i = 0; i < data.Length; i++) for (var j = 0; j < data.Length; j++) sumP += p[i, j];
254        for (var i = 0; i < data.Length; i++) for (var j = 0; j < data.Length; j++) p[i, j] /= sumP;
255        return p;
256      }
257
258      private static void ComputeGaussianPerplexity(IReadOnlyList<T> x, IDistance<T> distance, out int[] rowP, out int[] colP, out double[] valP, double perplexity, int k) {
259        if (perplexity > k) throw new ArgumentException("Perplexity should be lower than k!");
260
261        var n = x.Count;
262        // Allocate the memory we need
263        rowP = new int[n + 1];
264        colP = new int[n * k];
265        valP = new double[n * k];
266        var curP = new double[n - 1];
267        rowP[0] = 0;
268        for (var i = 0; i < n; i++) rowP[i + 1] = rowP[i] + k;
269
270        var objX = new List<IndexedItem<T>>();
271        for (var i = 0; i < n; i++) objX.Add(new IndexedItem<T>(i, x[i]));
272
273        // Build ball tree on data set
274        var tree = new VantagePointTree<IndexedItem<T>>(new IndexedItemDistance<T>(distance), objX);
275
276        // Loop over all points to find nearest neighbors
277        for (var i = 0; i < n; i++) {
278          IList<IndexedItem<T>> indices;
279          IList<double> distances;
280
281          // Find nearest neighbors
282          tree.Search(objX[i], k + 1, out indices, out distances);
283
284          // Initialize some variables for binary search
285          var found = false;
286          var beta = 1.0;
287          var minBeta = double.MinValue;
288          var maxBeta = double.MaxValue;
289          const double tol = 1e-5;
290
291          // Iterate until we found a good perplexity
292          var iter = 0; double sumP = 0;
293          while (!found && iter < 200) {
294
295            // Compute Gaussian kernel row
296            for (var m = 0; m < k; m++) curP[m] = Math.Exp(-beta * distances[m + 1]);
297
298            // Compute entropy of current row
299            sumP = double.Epsilon;
300            for (var m = 0; m < k; m++) sumP += curP[m];
301            var h = .0;
302            for (var m = 0; m < k; m++) h += beta * (distances[m + 1] * curP[m]);
303            h = h / sumP + Math.Log(sumP);
304
305            // Evaluate whether the entropy is within the tolerance level
306            var hdiff = h - Math.Log(perplexity);
307            if (hdiff < tol && -hdiff < tol) {
308              found = true;
309            } else {
310              if (hdiff > 0) {
311                minBeta = beta;
312                if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
313                  beta *= 2.0;
314                else
315                  beta = (beta + maxBeta) / 2.0;
316              } else {
317                maxBeta = beta;
318                if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
319                  beta /= 2.0;
320                else
321                  beta = (beta + minBeta) / 2.0;
322              }
323            }
324
325            // Update iteration counter
326            iter++;
327          }
328
329          // Row-normalize current row of P and store in matrix
330          for (var m = 0; m < k; m++) curP[m] /= sumP;
331          for (var m = 0; m < k; m++) {
332            colP[rowP[i] + m] = indices[m + 1].Index;
333            valP[rowP[i] + m] = curP[m];
334          }
335        }
336      }
337      private static void ComputeGaussianPerplexity(T[] x, IDistance<T> distance, double[,] p, double perplexity) {
338        // Compute the distance matrix
339        var dd = ComputeDistances(x, distance);
340
341        var n = x.Length;
342        // Compute the Gaussian kernel row by row
343        for (var i = 0; i < n; i++) {
344          // Initialize some variables
345          var found = false;
346          var beta = 1.0;
347          var minBeta = double.MinValue;
348          var maxBeta = double.MaxValue;
349          const double tol = 1e-5;
350          double sumP = 0;
351
352          // Iterate until we found a good perplexity
353          var iter = 0;
354          while (!found && iter < 200) {      // 200 iterations as in tSNE implementation by van der Maarten
355
356            // Compute Gaussian kernel row
357            for (var m = 0; m < n; m++) p[i, m] = Math.Exp(-beta * dd[i][m]);
358            p[i, i] = double.Epsilon;
359
360            // Compute entropy of current row
361            sumP = double.Epsilon;
362            for (var m = 0; m < n; m++) sumP += p[i, m];
363            var h = 0.0;
364            for (var m = 0; m < n; m++) h += beta * (dd[i][m] * p[i, m]);
365            h = h / sumP + Math.Log(sumP);
366
367            // Evaluate whether the entropy is within the tolerance level
368            var hdiff = h - Math.Log(perplexity);
369            if (hdiff < tol && -hdiff < tol) {
370              found = true;
371            } else {
372              if (hdiff > 0) {
373                minBeta = beta;
374                if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
375                  beta *= 2.0;
376                else
377                  beta = (beta + maxBeta) / 2.0;
378              } else {
379                maxBeta = beta;
380                if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
381                  beta /= 2.0;
382                else
383                  beta = (beta + minBeta) / 2.0;
384              }
385            }
386
387            // Update iteration counter
388            iter++;
389          }
390
391          // Row normalize P
392          for (var m = 0; m < n; m++) p[i, m] /= sumP;
393        }
394      }
395
396      private static double[][] ComputeDistances(T[] x, IDistance<T> distance) {
397        var res = new double[x.Length][];
398        for (var r = 0; r < x.Length; r++) {
399          var rowV = new double[x.Length];
400          // all distances must be symmetric
401          for (var c = 0; c < r; c++) {
402            rowV[c] = res[c][r];
403          }
404          rowV[r] = 0.0; // distance to self is zero for all distances
405          for (var c = r + 1; c < x.Length; c++) {
406            rowV[c] = distance.Get(x[r], x[c]);
407          }
408          res[r] = rowV;
409        }
410        return res;
411        // return x.Select(m => x.Select(n => distance.Get(m, n)).ToArray()).ToArray();
412      }
413
414      private static double EvaluateErrorExact(double[,] p, double[,] y, int n, int d) {
415        // Compute the squared Euclidean distance matrix
416        var dd = new double[n, n];
417        var q = new double[n, n];
418        ComputeSquaredEuclideanDistance(y, n, d, dd);
419
420        // Compute Q-matrix and normalization sum
421        var sumQ = double.Epsilon;
422        for (var n1 = 0; n1 < n; n1++) {
423          for (var m = 0; m < n; m++) {
424            if (n1 != m) {
425              q[n1, m] = 1 / (1 + dd[n1, m]);
426              sumQ += q[n1, m];
427            } else q[n1, m] = double.Epsilon;
428          }
429        }
430        for (var i = 0; i < n; i++) for (var j = 0; j < n; j++) q[i, j] /= sumQ;
431
432        // Sum t-SNE error
433        var c = .0;
434        for (var i = 0; i < n; i++)
435          for (var j = 0; j < n; j++) {
436            c += p[i, j] * Math.Log((p[i, j] + float.Epsilon) / (q[i, j] + float.Epsilon));
437          }
438        return c;
439      }
440
441      private static double EvaluateErrorApproximate(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, double[,] y, double theta) {
442        // Get estimate of normalization term
443        var n = y.GetLength(0);
444        var d = y.GetLength(1);
445        var tree = new SpacePartitioningTree(y);
446        var buff = new double[d];
447        var sumQ = 0.0;
448        for (var i = 0; i < n; i++) tree.ComputeNonEdgeForces(i, theta, buff, ref sumQ);
449
450        // Loop over all edges to compute t-SNE error
451        var c = .0;
452        for (var k = 0; k < n; k++) {
453          for (var i = rowP[k]; i < rowP[k + 1]; i++) {
454            var q = .0;
455            for (var j = 0; j < d; j++) buff[j] = y[k, j];
456            for (var j = 0; j < d; j++) buff[j] -= y[colP[i], j];
457            for (var j = 0; j < d; j++) q += buff[j] * buff[j];
458            q = (1.0 / (1.0 + q)) / sumQ;
459            c += valP[i] * Math.Log((valP[i] + float.Epsilon) / (q + float.Epsilon));
460          }
461        }
462        return c;
463      }
464      private static void SymmetrizeMatrix(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, out int[] symRowP, out int[] symColP, out double[] symValP) {
465
466        // Count number of elements and row counts of symmetric matrix
467        var n = rowP.Count - 1;
468        var rowCounts = new int[n];
469        for (var j = 0; j < n; j++) {
470          for (var i = rowP[j]; i < rowP[j + 1]; i++) {
471
472            // Check whether element (col_P[i], n) is present
473            var present = false;
474            for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
475              if (colP[m] == j) present = true;
476            }
477            if (present) rowCounts[j]++;
478            else {
479              rowCounts[j]++;
480              rowCounts[colP[i]]++;
481            }
482          }
483        }
484        var noElem = 0;
485        for (var i = 0; i < n; i++) noElem += rowCounts[i];
486
487        // Allocate memory for symmetrized matrix
488        symRowP = new int[n + 1];
489        symColP = new int[noElem];
490        symValP = new double[noElem];
491
492        // Construct new row indices for symmetric matrix
493        symRowP[0] = 0;
494        for (var i = 0; i < n; i++) symRowP[i + 1] = symRowP[i] + rowCounts[i];
495
496        // Fill the result matrix
497        var offset = new int[n];
498        for (var j = 0; j < n; j++) {
499          for (var i = rowP[j]; i < rowP[j + 1]; i++) {                                  // considering element(n, colP[i])
500
501            // Check whether element (col_P[i], n) is present
502            var present = false;
503            for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
504              if (colP[m] != j) continue;
505              present = true;
506              if (j > colP[i]) continue; // make sure we do not add elements twice
507              symColP[symRowP[j] + offset[j]] = colP[i];
508              symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
509              symValP[symRowP[j] + offset[j]] = valP[i] + valP[m];
510              symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i] + valP[m];
511            }
512
513            // If (colP[i], n) is not present, there is no addition involved
514            if (!present) {
515              symColP[symRowP[j] + offset[j]] = colP[i];
516              symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
517              symValP[symRowP[j] + offset[j]] = valP[i];
518              symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i];
519            }
520
521            // Update offsets
522            if (present && (j > colP[i])) continue;
523            offset[j]++;
524            if (colP[i] != j) offset[colP[i]]++;
525          }
526        }
527
528        for (var i = 0; i < noElem; i++) symValP[i] /= 2.0;
529      }
530      #endregion
531    }
532
533    /// <summary>
534    /// Static interface to tSNE
535    /// </summary>
536    /// <param name="data"></param>
537    /// <param name="distance">The distance function used to differentiate similar from non-similar points, e.g. Euclidean distance.</param>
538    /// <param name="random">Random number generator</param>
539    /// <param name="newDimensions">Dimensionality of projected space (usually 2 for easy visual analysis).</param>
540    /// <param name="perplexity">Perplexity parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower</param>
541    /// <param name="iterations">Maximum number of iterations for gradient descent.</param>
542    /// <param name="theta">Value describing how much appoximated gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. CAUTION: exact calculation of forces requires building a non-sparse N*N matrix where N is the number of data points. This may exceed memory limitations.</param>
543    /// <param name="stopLyingIter">Number of iterations after which p is no longer approximated.</param>
544    /// <param name="momSwitchIter">Number of iterations after which the momentum in the gradient descent is switched.</param>
545    /// <param name="momentum">The initial momentum in the gradient descent.</param>
546    /// <param name="finalMomentum">The final momentum in gradient descent (after momentum switch).</param>
547    /// <param name="eta">Gradient descent learning rate.</param>
548    /// <returns></returns>
549    public static double[,] Run(T[] data, IDistance<T> distance, IRandom random,
550      int newDimensions = 2, double perplexity = 25, int iterations = 1000,
551      double theta = 0,
552      int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
553      double finalMomentum = .8, double eta = 10.0
554      ) {
555      var state = CreateState(data, distance, random, newDimensions, perplexity,
556        theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta);
557
558      for (var i = 0; i < iterations - 1; i++) {
559        Iterate(state);
560      }
561      return Iterate(state);
562    }
563
564    public static TSNEState CreateState(T[] data, IDistance<T> distance, IRandom random,
565      int newDimensions = 2, double perplexity = 25, double theta = 0,
566      int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
567      double finalMomentum = .8, double eta = 10.0
568      ) {
569      return new TSNEState(data, distance, random, newDimensions, perplexity, theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta);
570    }
571
572    public static double[,] Iterate(TSNEState state) {
573      if (state.exact)
574        ComputeExactGradient(state.p, state.newData, state.noDatapoints, state.newDimensions, state.dY);
575      else
576        ComputeApproximateGradient(state.rowP, state.colP, state.valP, state.newData, state.noDatapoints, state.newDimensions, state.dY, state.theta);
577
578      // Update gains
579      for (var i = 0; i < state.noDatapoints; i++) {
580        for (var j = 0; j < state.newDimensions; j++) {
581          state.gains[i, j] = Math.Sign(state.dY[i, j]) != Math.Sign(state.uY[i, j])
582            ? state.gains[i, j] + .2  // +0.2 nd *0.8 are used in two separate implementations of tSNE -> seems to be correct
583            : state.gains[i, j] * .8;
584
585          if (state.gains[i, j] < .01) state.gains[i, j] = .01;
586        }
587      }
588
589
590      // Perform gradient update (with momentum and gains)
591      for (var i = 0; i < state.noDatapoints; i++)
592        for (var j = 0; j < state.newDimensions; j++)
593          state.uY[i, j] = state.currentMomentum * state.uY[i, j] - state.eta * state.gains[i, j] * state.dY[i, j];
594
595      for (var i = 0; i < state.noDatapoints; i++)
596        for (var j = 0; j < state.newDimensions; j++)
597          state.newData[i, j] = state.newData[i, j] + state.uY[i, j];
598
599      // Make solution zero-mean
600      ZeroMean(state.newData);
601
602      // Stop lying about the P-values after a while, and switch momentum
603      if (state.iter == state.stopLyingIter) {
604        if (state.exact)
605          for (var i = 0; i < state.noDatapoints; i++)
606            for (var j = 0; j < state.noDatapoints; j++)
607              state.p[i, j] /= 12.0;
608        else
609          for (var i = 0; i < state.rowP[state.noDatapoints]; i++)
610            state.valP[i] /= 12.0;
611      }
612
613      if (state.iter == state.momSwitchIter)
614        state.currentMomentum = state.finalMomentum;
615
616      state.iter++;
617      return state.newData;
618    }
619
620    #region Helpers
621    private static void ComputeApproximateGradient(int[] rowP, int[] colP, double[] valP, double[,] y, int n, int d, double[,] dC, double theta) {
622      var tree = new SpacePartitioningTree(y);
623      var sumQ = 0.0;
624      var posF = new double[n, d];
625      var negF = new double[n, d];
626      SpacePartitioningTree.ComputeEdgeForces(rowP, colP, valP, n, posF, y, d);
627      var row = new double[d];
628      for (var n1 = 0; n1 < n; n1++) {
629        Array.Clear(row, 0, row.Length);
630        tree.ComputeNonEdgeForces(n1, theta, row, ref sumQ);
631        Buffer.BlockCopy(row, 0, negF, (sizeof(double) * n1 * d), d * sizeof(double));
632      }
633
634      // Compute final t-SNE gradient
635      for (var i = 0; i < n; i++)
636        for (var j = 0; j < d; j++) {
637          dC[i, j] = posF[i, j] - negF[i, j] / sumQ;
638        }
639    }
640
641    private static void ComputeExactGradient(double[,] p, double[,] y, int n, int d, double[,] dC) {
642      // Make sure the current gradient contains zeros
643      for (var i = 0; i < n; i++) for (var j = 0; j < d; j++) dC[i, j] = 0.0;
644
645      // Compute the squared Euclidean distance matrix
646      var dd = new double[n, n];
647      ComputeSquaredEuclideanDistance(y, n, d, dd);
648
649      // Compute Q-matrix and normalization sum
650      var q = new double[n, n];
651      var sumQ = .0;
652      for (var n1 = 0; n1 < n; n1++) {
653        for (var m = 0; m < n; m++) {
654          if (n1 == m) continue;
655          q[n1, m] = 1 / (1 + dd[n1, m]);
656          sumQ += q[n1, m];
657        }
658      }
659
660      // Perform the computation of the gradient
661      for (var n1 = 0; n1 < n; n1++) {
662        for (var m = 0; m < n; m++) {
663          if (n1 == m) continue;
664          var mult = (p[n1, m] - q[n1, m] / sumQ) * q[n1, m];
665          for (var d1 = 0; d1 < d; d1++) {
666            dC[n1, d1] += (y[n1, d1] - y[m, d1]) * mult;
667          }
668        }
669      }
670    }
671
672    private static void ComputeSquaredEuclideanDistance(double[,] x, int n, int d, double[,] dd) {
673      var dataSums = new double[n];
674      for (var i = 0; i < n; i++) {
675        for (var j = 0; j < d; j++) {
676          dataSums[i] += x[i, j] * x[i, j];
677        }
678      }
679      for (var i = 0; i < n; i++) {
680        for (var m = 0; m < n; m++) {
681          dd[i, m] = dataSums[i] + dataSums[m];
682        }
683      }
684      for (var i = 0; i < n; i++) {
685        dd[i, i] = 0.0;
686        for (var m = i + 1; m < n; m++) {
687          dd[i, m] = 0.0;
688          for (var j = 0; j < d; j++) {
689            dd[i, m] += (x[i, j] - x[m, j]) * (x[i, j] - x[m, j]);
690          }
691          dd[m, i] = dd[i, m];
692        }
693      }
694    }
695
696    private static void ZeroMean(double[,] x) {
697      // Compute data mean
698      var n = x.GetLength(0);
699      var d = x.GetLength(1);
700      var mean = new double[d];
701      for (var i = 0; i < n; i++) {
702        for (var j = 0; j < d; j++) {
703          mean[j] += x[i, j];
704        }
705      }
706      for (var i = 0; i < d; i++) {
707        mean[i] /= n;
708      }
709      // Subtract data mean
710      for (var i = 0; i < n; i++) {
711        for (var j = 0; j < d; j++) {
712          x[i, j] -= mean[j];
713        }
714      }
715    }
716    #endregion
717  }
718}
Note: See TracBrowser for help on using the repository browser.