1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Collections;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using System;
|
---|
32 | using System.Collections.Generic;
|
---|
33 | using System.Linq;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.GoalSeeking {
|
---|
36 | [Item("Goal seeking problem (multi-objective)", "Represents a single objective optimization problem which uses configurable regression models to evaluate targets from a given dataset.")]
|
---|
37 | [Creatable("Problems")]
|
---|
38 | [StorableType("76EA4627-FD52-41D0-A594-20C99F700F46")]
|
---|
39 | public sealed class MultiObjectiveGoalSeekingProblem : MultiObjectiveBasicProblem<RealVectorEncoding>, IGoalSeekingProblem {
|
---|
40 | #region parameter names
|
---|
41 | private const string InputsParameterName = "Inputs";
|
---|
42 | private const string GoalsParameterName = "Goals";
|
---|
43 | private const string ModelsParameterName = "Models";
|
---|
44 | private const string QualitySumCutoffParameterName = "QualitySumCutoff";
|
---|
45 | #endregion
|
---|
46 |
|
---|
47 | #region parameters
|
---|
48 | public IValueParameter<CheckedItemList<InputParameter>> InputsParameter {
|
---|
49 | get { return (IValueParameter<CheckedItemList<InputParameter>>)Parameters[InputsParameterName]; }
|
---|
50 | }
|
---|
51 | public IValueParameter<CheckedItemList<GoalParameter>> GoalsParameter {
|
---|
52 | get { return (IValueParameter<CheckedItemList<GoalParameter>>)Parameters[GoalsParameterName]; }
|
---|
53 | }
|
---|
54 | public IFixedValueParameter<ItemList<IRegressionModel>> ModelsParameter {
|
---|
55 | get { return (IFixedValueParameter<ItemList<IRegressionModel>>)Parameters[ModelsParameterName]; }
|
---|
56 | }
|
---|
57 | public IFixedValueParameter<DoubleValue> QualitySumCutoffParameter {
|
---|
58 | get { return (IFixedValueParameter<DoubleValue>)Parameters[QualitySumCutoffParameterName]; }
|
---|
59 | }
|
---|
60 | #endregion
|
---|
61 |
|
---|
62 | #region IGoalSeekingProblem implementation
|
---|
63 | public IEnumerable<IRegressionModel> Models {
|
---|
64 | get { return ModelsParameter.Value; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IEnumerable<GoalParameter> Goals {
|
---|
68 | get { return GoalsParameter.Value; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public IEnumerable<InputParameter> Inputs {
|
---|
72 | get { return InputsParameter.Value; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public void AddModel(IRegressionModel model) {
|
---|
76 | var models = ModelsParameter.Value;
|
---|
77 | models.Add(model);
|
---|
78 | GoalSeekingUtil.RaiseEvent(this, ModelsChanged);
|
---|
79 | }
|
---|
80 |
|
---|
81 | public void RemoveModel(IRegressionModel model) {
|
---|
82 | var models = ModelsParameter.Value;
|
---|
83 | models.Remove(model);
|
---|
84 | GoalSeekingUtil.RaiseEvent(this, ModelsChanged);
|
---|
85 | }
|
---|
86 |
|
---|
87 | public void Configure(IRegressionProblemData problemData, int row) {
|
---|
88 | GoalSeekingUtil.Configure(Goals, Inputs, problemData, row);
|
---|
89 | }
|
---|
90 |
|
---|
91 | public IEnumerable<double> GetEstimatedGoalValues(IEnumerable<double> parameterValues, bool round = false) {
|
---|
92 | var ds = (ModifiableDataset)dataset.Clone();
|
---|
93 | foreach (var parameter in ActiveInputs.Zip(parameterValues, (p, v) => new { p.Name, Value = v })) {
|
---|
94 | ds.SetVariableValue(parameter.Value, parameter.Name, 0);
|
---|
95 | }
|
---|
96 | var rows = new[] { 0 }; // actually just one row
|
---|
97 | return round ? ActiveGoals.Select(t => RoundToNearestStepMultiple(GetModels(t.Name).Average(m => m.GetEstimatedValues(ds, rows).Single()), t.Step))
|
---|
98 | : ActiveGoals.Select(t => GetModels(t.Name).Average(m => m.GetEstimatedValues(ds, rows).Single()));
|
---|
99 | }
|
---|
100 |
|
---|
101 | public event EventHandler ModelsChanged;
|
---|
102 | public event EventHandler TargetsChanged;
|
---|
103 | public event EventHandler ParametersChanged;
|
---|
104 | #endregion
|
---|
105 |
|
---|
106 | private IEnumerable<GoalParameter> ActiveGoals {
|
---|
107 | get { return Goals.Where(x => x.Active); }
|
---|
108 | }
|
---|
109 | private IEnumerable<InputParameter> ActiveInputs {
|
---|
110 | get { return Inputs.Where(x => x.Active); }
|
---|
111 | }
|
---|
112 | private double QualitySumCutoff {
|
---|
113 | get { return QualitySumCutoffParameter.Value.Value; }
|
---|
114 | }
|
---|
115 |
|
---|
116 | [Storable]
|
---|
117 | private ModifiableDataset dataset; // modifiable dataset
|
---|
118 |
|
---|
119 | [Storable]
|
---|
120 | private bool[] maximization;
|
---|
121 | public override bool[] Maximization {
|
---|
122 | get { return maximization ?? new bool[] { false }; }
|
---|
123 | }
|
---|
124 |
|
---|
125 | public ValueParameter<BoolArray> MaximizationParameter {
|
---|
126 | get { return (ValueParameter<BoolArray>)Parameters["Maximization"]; }
|
---|
127 | }
|
---|
128 |
|
---|
129 | #region constructors
|
---|
130 | [StorableConstructor]
|
---|
131 | private MultiObjectiveGoalSeekingProblem(StorableConstructorFlag _) : base(_) { }
|
---|
132 |
|
---|
133 | private MultiObjectiveGoalSeekingProblem(MultiObjectiveGoalSeekingProblem original, Cloner cloner) : base(original, cloner) {
|
---|
134 | this.dataset = cloner.Clone(original.dataset);
|
---|
135 |
|
---|
136 | RegisterEvents();
|
---|
137 | }
|
---|
138 |
|
---|
139 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
140 | return new MultiObjectiveGoalSeekingProblem(this, cloner);
|
---|
141 | }
|
---|
142 |
|
---|
143 | [StorableHook(HookType.AfterDeserialization)]
|
---|
144 | private void AfterDeserialization() {
|
---|
145 | RegisterEvents();
|
---|
146 | }
|
---|
147 |
|
---|
148 | public MultiObjectiveGoalSeekingProblem() {
|
---|
149 | dataset = new ModifiableDataset();
|
---|
150 | Parameters.Add(new ValueParameter<CheckedItemList<InputParameter>>(InputsParameterName));
|
---|
151 | Parameters.Add(new ValueParameter<CheckedItemList<GoalParameter>>(GoalsParameterName));
|
---|
152 | Parameters.Add(new FixedValueParameter<ItemList<IRegressionModel>>(ModelsParameterName, new ItemList<IRegressionModel>()));
|
---|
153 | Parameters.Add(new FixedValueParameter<DoubleValue>(QualitySumCutoffParameterName, new DoubleValue(0.2)));
|
---|
154 | QualitySumCutoffParameter.Hidden = true;
|
---|
155 | EncodingParameter.Hidden = true;
|
---|
156 | EvaluatorParameter.Hidden = true;
|
---|
157 | SolutionCreatorParameter.Hidden = true;
|
---|
158 | MaximizationParameter.Hidden = true;
|
---|
159 | RegisterEvents();
|
---|
160 | }
|
---|
161 | #endregion
|
---|
162 |
|
---|
163 | public override double[] Evaluate(Individual individual, IRandom random) {
|
---|
164 | var vector = individual.RealVector();
|
---|
165 | vector.ElementNames = ActiveInputs.Select(x => x.Name);
|
---|
166 | int i = 0;
|
---|
167 | // round vector according to parameter step sizes
|
---|
168 | foreach (var parameter in ActiveInputs) {
|
---|
169 | vector[i] = RoundToNearestStepMultiple(vector[i], parameter.Step);
|
---|
170 | ++i;
|
---|
171 | }
|
---|
172 | var estimatedValues = GetEstimatedGoalValues(vector, round: true);
|
---|
173 | var qualities = ActiveGoals.Zip(estimatedValues, (t, v) => new { Target = t, EstimatedValue = v })
|
---|
174 | .Select(x => x.Target.Weight * Math.Pow(x.EstimatedValue - x.Target.Goal, 2) / x.Target.Variance);
|
---|
175 | return qualities.ToArray();
|
---|
176 | }
|
---|
177 |
|
---|
178 | #region pareto analyzer
|
---|
179 | public override void Analyze(Individual[] individuals, double[][] qualities, ResultCollection results, IRandom random) {
|
---|
180 | var matrix = FilterFrontsByQualitySum(individuals, qualities, Math.Max(QualitySumCutoff, qualities.Min(x => x.Sum())));
|
---|
181 | const string resultName = "Pareto Front Solutions"; // disclaimer: not really a pareto front
|
---|
182 | if (!results.ContainsKey(resultName)) {
|
---|
183 | results.Add(new Result(resultName, matrix));
|
---|
184 | } else {
|
---|
185 | results[resultName].Value = matrix;
|
---|
186 | }
|
---|
187 | base.Analyze(individuals, qualities, results, random);
|
---|
188 | }
|
---|
189 |
|
---|
190 | private DoubleMatrix FilterFrontsByQualitySum(Individual[] individuals, double[][] qualities, double qualitySumCutoff) {
|
---|
191 | var activeParameters = ActiveInputs.ToList();
|
---|
192 | var activeGoals = ActiveGoals.ToList();
|
---|
193 | var filteredModels = new List<double[]>();
|
---|
194 | var rowNames = new List<string>();
|
---|
195 | // build list of column names by combining target and parameter names (with their respective original and estimated values)
|
---|
196 | var columnNames = new List<string> { "Quality Sum" };
|
---|
197 | foreach (var target in activeGoals) {
|
---|
198 | columnNames.Add(target.Name);
|
---|
199 | columnNames.Add(target.Name + " (estimated)");
|
---|
200 | }
|
---|
201 | foreach (var parameter in activeParameters) {
|
---|
202 | columnNames.Add(parameter.Name);
|
---|
203 | columnNames.Add(parameter.Name + " (estimated)");
|
---|
204 | columnNames.Add(parameter.Name + " (deviation)");
|
---|
205 | }
|
---|
206 | // filter models based on their quality sum; remove duplicate models
|
---|
207 | var dec = new DoubleEqualityComparer(); // comparer which uses the IsAlmost method for comparing floating point numbers
|
---|
208 | for (int i = 0; i < individuals.Length; ++i) {
|
---|
209 | var qualitySum = qualities[i].Sum();
|
---|
210 | if (qualitySum > qualitySumCutoff)
|
---|
211 | continue;
|
---|
212 | var vector = individuals[i].RealVector();
|
---|
213 | var estimatedValues = GetEstimatedGoalValues(vector).ToList();
|
---|
214 | var rowValues = new double[columnNames.Count];
|
---|
215 | rowValues[0] = qualitySum;
|
---|
216 | int offset = 1;
|
---|
217 | for (int j = 0; j < activeGoals.Count * 2; j += 2) {
|
---|
218 | int k = j + offset;
|
---|
219 | rowValues[k] = activeGoals[j / 2].Goal; // original value
|
---|
220 | rowValues[k + 1] = estimatedValues[j / 2]; // estimated value
|
---|
221 | }
|
---|
222 | offset += activeGoals.Count * 2;
|
---|
223 | for (int j = 0; j < activeParameters.Count * 3; j += 3) {
|
---|
224 | int k = j + offset;
|
---|
225 | rowValues[k] = activeParameters[j / 3].Value;
|
---|
226 | rowValues[k + 1] = vector[j / 3];
|
---|
227 | rowValues[k + 2] = rowValues[k + 1] - rowValues[k];
|
---|
228 | }
|
---|
229 | if (!filteredModels.Any(x => x.SequenceEqual(rowValues, dec))) {
|
---|
230 | rowNames.Add((i + 1).ToString());
|
---|
231 | filteredModels.Add(rowValues);
|
---|
232 | }
|
---|
233 | }
|
---|
234 | var matrix = new DoubleMatrix(filteredModels.Count, columnNames.Count) { RowNames = rowNames, ColumnNames = columnNames, SortableView = true };
|
---|
235 | for (int i = 0; i < filteredModels.Count; ++i) {
|
---|
236 | for (int j = 0; j < filteredModels[i].Length; ++j) {
|
---|
237 | matrix[i, j] = filteredModels[i][j];
|
---|
238 | }
|
---|
239 | }
|
---|
240 | return matrix;
|
---|
241 | }
|
---|
242 | #endregion
|
---|
243 |
|
---|
244 | #region event handlers
|
---|
245 | private void RegisterEvents() {
|
---|
246 | ModelsParameter.Value.ItemsAdded += ModelCollection_ItemsChanged;
|
---|
247 | ModelsParameter.Value.ItemsRemoved += ModelCollection_ItemsChanged;
|
---|
248 | GoalsParameter.Value.CheckedItemsChanged += GoalSeekingUtil.Goals_CheckedItemsChanged;
|
---|
249 | InputsParameter.Value.CheckedItemsChanged += GoalSeekingUtil.Inputs_CheckedItemsChanged;
|
---|
250 |
|
---|
251 | foreach (var input in Inputs)
|
---|
252 | input.Changed += InputParameterChanged;
|
---|
253 |
|
---|
254 | foreach (var goal in Goals)
|
---|
255 | goal.Changed += GoalParameterChanged;
|
---|
256 | }
|
---|
257 |
|
---|
258 | private void ModelCollection_ItemsChanged(object sender, CollectionItemsChangedEventArgs<IndexedItem<IRegressionModel>> e) {
|
---|
259 | if (e.Items == null || !e.Items.Any()) return;
|
---|
260 | GoalSeekingUtil.UpdateInputs(InputsParameter.Value, Models, InputParameterChanged);
|
---|
261 | GoalSeekingUtil.UpdateEncoding(Encoding, ActiveInputs);
|
---|
262 | dataset = Inputs.Any() ? new ModifiableDataset(Inputs.Select(x => x.Name), Inputs.Select(x => new List<double> { x.Value })) : new ModifiableDataset();
|
---|
263 | GoalSeekingUtil.UpdateTargets(GoalsParameter.Value, Models, GoalParameterChanged);
|
---|
264 | GoalSeekingUtil.RaiseEvent(this, ModelsChanged);
|
---|
265 | }
|
---|
266 |
|
---|
267 | private void InputParameterChanged(object sender, EventArgs args) {
|
---|
268 | var inputParameter = (InputParameter)sender;
|
---|
269 | var inputs = InputsParameter.Value;
|
---|
270 | if (inputs.ItemChecked(inputParameter) != inputParameter.Active)
|
---|
271 | inputs.SetItemCheckedState(inputParameter, inputParameter.Active);
|
---|
272 | GoalSeekingUtil.UpdateEncoding(Encoding, ActiveInputs);
|
---|
273 | }
|
---|
274 |
|
---|
275 | private void GoalParameterChanged(object sender, EventArgs args) {
|
---|
276 | var goalParameter = (GoalParameter)sender;
|
---|
277 | var goals = GoalsParameter.Value;
|
---|
278 | if (goals.ItemChecked(goalParameter) != goalParameter.Active)
|
---|
279 | goals.SetItemCheckedState(goalParameter, goalParameter.Active);
|
---|
280 | }
|
---|
281 | #endregion
|
---|
282 |
|
---|
283 | #region helper methods
|
---|
284 | // method which throws an exception that can be caught in the event handler if the check fails
|
---|
285 | private void CheckIfDatasetContainsTarget(string target) {
|
---|
286 | if (dataset.DoubleVariables.All(x => x != target))
|
---|
287 | throw new ArgumentException(string.Format("Model target \"{0}\" does not exist in the dataset.", target));
|
---|
288 | }
|
---|
289 | private static double RoundToNearestStepMultiple(double value, double step) {
|
---|
290 | return step * (long)Math.Round(value / step);
|
---|
291 | }
|
---|
292 | private IEnumerable<IRegressionModel> GetModels(string target) {
|
---|
293 | return Models.Where(x => x.TargetVariable == target);
|
---|
294 | }
|
---|
295 | private class DoubleEqualityComparer : IEqualityComparer<double> {
|
---|
296 | public bool Equals(double x, double y) { return x.IsAlmost(y); }
|
---|
297 | public int GetHashCode(double obj) { return obj.GetHashCode(); }
|
---|
298 | }
|
---|
299 | #endregion
|
---|
300 | }
|
---|
301 | }
|
---|