Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2679_HeuristicLab.GoalSeekingProblem/HeuristicLab.GoalSeekingProblem/3.4/GoalSeekingUtil.cs @ 17270

Last change on this file since 17270 was 14379, checked in by bburlacu, 8 years ago

#2679: Use an item list for models in the goal seeking problems instead of an item collection. Update encoding instead of creating a new one when inputs are changed.

File size: 6.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Collections;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Data;
30using HeuristicLab.Encodings.RealVectorEncoding;
31using HeuristicLab.Problems.DataAnalysis;
32
33namespace HeuristicLab.GoalSeeking {
34  internal static class GoalSeekingUtil {
35    internal static void UpdateTargets(ICheckedItemList<GoalParameter> goals, IEnumerable<IRegressionModel> models, EventHandler changedEventHandler) {
36      var targets = models.Select(x => x.TargetVariable).Distinct().OrderBy(x => x);
37      var dict = goals.ToDictionary(x => x.Name, x => x);
38      goals.Clear();
39      foreach (var t in targets) {
40        GoalParameter gp;
41        if (dict.ContainsKey(t)) {
42          gp = dict[t];
43        } else {
44          var goal = double.NaN;
45          var weight = 1.0;
46          var variance = double.NaN;
47          var step = 1e-6;
48          gp = new GoalParameter(t, goal, weight, variance, step, active: false); // new goals are not active by default as they need to be configured by the user
49          gp.Changed += changedEventHandler;
50        }
51        goals.Add(gp, gp.Active);
52      }
53    }
54
55    internal static void UpdateInputs(ICheckedItemList<InputParameter> inputs, IEnumerable<IRegressionModel> models, EventHandler changedEventHandler) {
56      var variables = models.SelectMany(x => x.VariablesUsedForPrediction).Distinct();
57      var dict = inputs.ToDictionary(x => x.Name, x => x); // save old parameter settings
58      inputs.Clear();
59      foreach (var v in variables) {
60        InputParameter ip;
61        if (dict.ContainsKey(v)) {
62          ip = dict[v];
63        } else {
64          ip = new InputParameter(v, double.NaN, -1, 1, 1e-6, active: false); // new inputs are not active by default. the user needs to configure them first
65          ip.Changed += changedEventHandler;
66        }
67        inputs.Add(ip, ip.Active);
68      }
69    }
70
71    internal static RealVectorEncoding CreateEncoding(IEnumerable<InputParameter> inputParameters) {
72      var encoding = new RealVectorEncoding(inputParameters.Count());
73      encoding.Bounds = new DoubleMatrix(encoding.Length, 2); // only two columns: min and max
74      encoding.Bounds.RowNames = inputParameters.Select(x => x.Name);
75      encoding.Bounds.ColumnNames = new[] { "Min.", "Max." };
76
77      int i = 0;
78      foreach (var parameter in inputParameters) {
79        encoding.Bounds[i, 0] = parameter.Min;
80        encoding.Bounds[i, 1] = parameter.Max;
81        ++i;
82      }
83      return encoding;
84    }
85
86    internal static void UpdateEncoding(RealVectorEncoding encoding, IEnumerable<InputParameter> inputParameters) {
87      encoding.Length = inputParameters.Count();
88      encoding.Bounds = new DoubleMatrix(encoding.Length, 2);
89      encoding.Bounds.RowNames = inputParameters.Select(x => x.Name);
90      encoding.Bounds.ColumnNames = new[] { "Min.", "Max." };
91
92      int i = 0;
93      foreach (var parameter in inputParameters) {
94        encoding.Bounds[i, 0] = parameter.Min;
95        encoding.Bounds[i, 1] = parameter.Max;
96        ++i;
97      }
98    }
99
100    internal static void ValidateGoalsAndInputs(IEnumerable<GoalParameter> goals, IEnumerable<InputParameter> inputs) {
101      var notConfiguredGoals = goals.Where(x => x.Active && (double.IsNaN(x.Variance) || double.IsNaN(x.Goal))).ToList();
102      var notConfiguredInputs = inputs.Where(x => x.Active && (double.IsNaN(x.Min) || double.IsNaN(x.Max) || double.IsNaN(x.Value))).ToList();
103      StringBuilder sb = null;
104      if (notConfiguredGoals.Any()) {
105        sb = new StringBuilder();
106        sb.AppendLine("The following GoalParameters are not configured.");
107        foreach (var goal in notConfiguredGoals) {
108          sb.AppendLine(goal.Name);
109        }
110      }
111      if (notConfiguredInputs.Any()) {
112        if (sb == null)
113          sb = new StringBuilder();
114        sb.AppendLine("The following InpuTParameters are not configured.");
115        foreach (var input in notConfiguredInputs) {
116          sb.AppendLine(input.Name);
117        }
118      }
119      if (sb != null)
120        throw new InvalidOperationException(sb.ToString());
121    }
122
123    internal static void Configure(IEnumerable<GoalParameter> goals, IEnumerable<InputParameter> inputs, IRegressionProblemData problemData, int row) {
124      var inputMap = inputs.ToDictionary(x => x.Name, x => x);
125      var goalMap = goals.ToDictionary(x => x.Name, x => x);
126
127      foreach (var variable in problemData.Dataset.DoubleVariables) {
128        if (inputMap.ContainsKey(variable)) {
129          var values = problemData.Dataset.GetReadOnlyDoubleValues(variable);
130          var input = inputMap[variable];
131          input.Value = values[row];
132          double min = values[0], max = values[0];
133          foreach (var v in values) {
134            if (min > v) min = v;
135            if (max < v) max = v;
136          }
137          input.Min = min;
138          input.Max = max;
139        } else if (goalMap.ContainsKey(variable)) {
140          var values = problemData.Dataset.GetReadOnlyDoubleValues(variable);
141          var goal = goalMap[variable];
142          goal.Variance = values.Variance();
143          goal.Goal = values[row];
144        }
145      }
146    }
147
148    internal static void Goals_CheckedItemsChanged(object sender, CollectionItemsChangedEventArgs<IndexedItem<GoalParameter>> args) {
149      var goals = (CheckedItemList<GoalParameter>)sender;
150      foreach (var item in args.Items.Select(x => x.Value)) {
151        item.Active = goals.ItemChecked(item);
152      }
153    }
154
155    internal static void Inputs_CheckedItemsChanged(object sender, CollectionItemsChangedEventArgs<IndexedItem<InputParameter>> args) {
156      var inputs = (CheckedItemList<InputParameter>)sender;
157      foreach (var item in args.Items.Select(x => x.Value)) {
158        item.Active = inputs.ItemChecked(item);
159      }
160    }
161
162    internal static void RaiseEvent(object sender, EventHandler handler) {
163      if (handler == null) return;
164      handler(sender, EventArgs.Empty);
165    }
166  }
167}
Note: See TracBrowser for help on using the repository browser.