Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2522_RefactorPluginInfrastructure/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionDeterministicBestCrossover.cs @ 17877

Last change on this file since 17877 was 15973, checked in by gkronber, 7 years ago

#2522: merged trunk changes from r13402:15972 to branch resolving conflicts where necessary

File size: 5.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Random;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
32  [Item("DeterministicBestCrossover", "An operator which performs subtree swapping by choosing the best subtree to be swapped in a certain position:\n" +
33                                      "- Take two parent individuals P0 and P1\n" +
34                                      "- Randomly choose a crossover point C from P0\n" +
35                                      "- Test all nodes from P1 to determine the one that produces the best child when inserted at place C in P0")]
36  public sealed class SymbolicDataAnalysisExpressionDeterministicBestCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
37    [StorableConstructor]
38    private SymbolicDataAnalysisExpressionDeterministicBestCrossover(bool deserializing) : base(deserializing) { }
39    private SymbolicDataAnalysisExpressionDeterministicBestCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
40      : base(original, cloner) {
41    }
42    public SymbolicDataAnalysisExpressionDeterministicBestCrossover()
43      : base() {
44      name = "DeterministicBestCrossover";
45    }
46    public override IDeepCloneable Clone(Cloner cloner) {
47      return new SymbolicDataAnalysisExpressionDeterministicBestCrossover<T>(this, cloner);
48    }
49    public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
50      if (this.ExecutionContext == null)
51        throw new InvalidOperationException("ExecutionContext not set.");
52      List<int> rows = GenerateRowsToEvaluate().ToList();
53      T problemData = ProblemDataParameter.ActualValue;
54      ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator = EvaluatorParameter.ActualValue;
55
56      return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
57    }
58
59    /// <summary>
60    /// Takes two parent individuals P0 and P1.
61    /// Randomly choose a node i from the first parent, then test all nodes j from the second parent to determine the best child that would be obtained by swapping i for j.
62    /// </summary>
63    public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context,
64                                                ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator, T problemData, List<int> rows, int maxDepth, int maxLength) {
65      var crossoverPoints0 = new List<CutPoint>();
66      parent0.Root.ForEachNodePostfix((n) => {
67        if (n.Parent != null && n.Parent != parent0.Root)
68          crossoverPoints0.Add(new CutPoint(n.Parent, n));
69      });
70
71      CutPoint crossoverPoint0 = crossoverPoints0.SampleRandom(random);
72      int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
73      int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
74
75      var allowedBranches = new List<ISymbolicExpressionTreeNode>();
76      parent1.Root.ForEachNodePostfix((n) => {
77        if (n.Parent != null && n.Parent != parent1.Root) {
78          if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
79            allowedBranches.Add(n);
80        }
81      });
82
83      if (allowedBranches.Count == 0)
84        return parent0;
85
86      // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
87      ISymbolicExpressionTreeNode selectedBranch = null;
88      var nodeQualities = new List<Tuple<ISymbolicExpressionTreeNode, double>>();
89      var originalChild = crossoverPoint0.Child;
90
91      foreach (var node in allowedBranches) {
92        var parent = node.Parent;
93        Swap(crossoverPoint0, node); // the swap will set the nodes parent to crossoverPoint0.Parent
94        IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope);
95        double quality = evaluator.Evaluate(childContext, parent0, problemData, rows);
96        Swap(crossoverPoint0, originalChild); // swap the child back (so that the next swap will not affect the currently swapped node from parent1)
97        nodeQualities.Add(new Tuple<ISymbolicExpressionTreeNode, double>(node, quality));
98        node.Parent = parent; // restore correct parent
99      }
100
101      nodeQualities.Sort((a, b) => a.Item2.CompareTo(b.Item2));
102      selectedBranch = evaluator.Maximization ? nodeQualities.Last().Item1 : nodeQualities.First().Item1;
103
104      // swap the node that would create the best offspring
105      Swap(crossoverPoint0, selectedBranch);
106      return parent0;
107    }
108  }
109}
Note: See TracBrowser for help on using the repository browser.