1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.PluginInfrastructure;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
35 | [Item("Kernel Ridge Regression", "Kernelized ridge regression e.g. for radial basis function (RBF) regression.")]
|
---|
36 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)]
|
---|
37 | [StorableClass]
|
---|
38 | public sealed class KernelRidgeRegression : BasicAlgorithm, IDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
39 | private const string SolutionResultName = "Kernel ridge regression solution";
|
---|
40 |
|
---|
41 | public override bool SupportsPause {
|
---|
42 | get { return false; }
|
---|
43 | }
|
---|
44 | public override Type ProblemType {
|
---|
45 | get { return typeof(IRegressionProblem); }
|
---|
46 | }
|
---|
47 | public new IRegressionProblem Problem {
|
---|
48 | get { return (IRegressionProblem)base.Problem; }
|
---|
49 | set { base.Problem = value; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | #region parameter names
|
---|
53 | private const string KernelParameterName = "Kernel";
|
---|
54 | private const string ScaleInputVariablesParameterName = "ScaleInputVariables";
|
---|
55 | private const string LambdaParameterName = "LogLambda";
|
---|
56 | private const string BetaParameterName = "Beta";
|
---|
57 | #endregion
|
---|
58 |
|
---|
59 | #region parameter properties
|
---|
60 | public IConstrainedValueParameter<IKernel> KernelParameter {
|
---|
61 | get { return (IConstrainedValueParameter<IKernel>)Parameters[KernelParameterName]; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | public IFixedValueParameter<BoolValue> ScaleInputVariablesParameter {
|
---|
65 | get { return (IFixedValueParameter<BoolValue>)Parameters[ScaleInputVariablesParameterName]; }
|
---|
66 | }
|
---|
67 |
|
---|
68 | public IFixedValueParameter<DoubleValue> LogLambdaParameter {
|
---|
69 | get { return (IFixedValueParameter<DoubleValue>)Parameters[LambdaParameterName]; }
|
---|
70 | }
|
---|
71 |
|
---|
72 | public IFixedValueParameter<DoubleValue> BetaParameter {
|
---|
73 | get { return (IFixedValueParameter<DoubleValue>)Parameters[BetaParameterName]; }
|
---|
74 | }
|
---|
75 | #endregion
|
---|
76 |
|
---|
77 | #region properties
|
---|
78 | public IKernel Kernel {
|
---|
79 | get { return KernelParameter.Value; }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public bool ScaleInputVariables {
|
---|
83 | get { return ScaleInputVariablesParameter.Value.Value; }
|
---|
84 | set { ScaleInputVariablesParameter.Value.Value = value; }
|
---|
85 | }
|
---|
86 |
|
---|
87 | public double LogLambda {
|
---|
88 | get { return LogLambdaParameter.Value.Value; }
|
---|
89 | set { LogLambdaParameter.Value.Value = value; }
|
---|
90 | }
|
---|
91 |
|
---|
92 | public double Beta {
|
---|
93 | get { return BetaParameter.Value.Value; }
|
---|
94 | set { BetaParameter.Value.Value = value; }
|
---|
95 | }
|
---|
96 | #endregion
|
---|
97 |
|
---|
98 | [StorableConstructor]
|
---|
99 | private KernelRidgeRegression(bool deserializing) : base(deserializing) { }
|
---|
100 | private KernelRidgeRegression(KernelRidgeRegression original, Cloner cloner)
|
---|
101 | : base(original, cloner) {
|
---|
102 | }
|
---|
103 | public KernelRidgeRegression() {
|
---|
104 | Problem = new RegressionProblem();
|
---|
105 | var values = new ItemSet<IKernel>(ApplicationManager.Manager.GetInstances<IKernel>());
|
---|
106 | Parameters.Add(new ConstrainedValueParameter<IKernel>(KernelParameterName, "The kernel", values, values.OfType<GaussianKernel>().FirstOrDefault()));
|
---|
107 | Parameters.Add(new FixedValueParameter<BoolValue>(ScaleInputVariablesParameterName, "Set to true if the input variables should be scaled to the interval [0..1]", new BoolValue(true)));
|
---|
108 | Parameters.Add(new FixedValueParameter<DoubleValue>(LambdaParameterName, "The log10-transformed weight for the regularization term lambda [-inf..+inf]. Small values produce more complex models, large values produce models with larger errors. Set to very small value (e.g. -1.0e15) for almost exact approximation", new DoubleValue(-2)));
|
---|
109 | Parameters.Add(new FixedValueParameter<DoubleValue>(BetaParameterName, "The inverse width of the kernel ]0..+inf]. The distance between points is divided by this value before being plugged into the kernel.", new DoubleValue(2)));
|
---|
110 | }
|
---|
111 |
|
---|
112 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
113 | return new KernelRidgeRegression(this, cloner);
|
---|
114 | }
|
---|
115 |
|
---|
116 | protected override void Run(CancellationToken cancellationToken) {
|
---|
117 | double rmsError, looCvRMSE;
|
---|
118 | var kernel = Kernel;
|
---|
119 | kernel.Beta = Beta;
|
---|
120 | var solution = CreateRadialBasisRegressionSolution(Problem.ProblemData, kernel, Math.Pow(10, LogLambda), ScaleInputVariables, out rmsError, out looCvRMSE);
|
---|
121 | Results.Add(new Result(SolutionResultName, "The kernel ridge regression solution.", solution));
|
---|
122 | Results.Add(new Result("RMSE (test)", "The root mean squared error of the solution on the test set.", new DoubleValue(rmsError)));
|
---|
123 | Results.Add(new Result("RMSE (LOO-CV)", "The leave-one-out-cross-validation root mean squared error", new DoubleValue(looCvRMSE)));
|
---|
124 | }
|
---|
125 |
|
---|
126 | public static IRegressionSolution CreateRadialBasisRegressionSolution(IRegressionProblemData problemData, ICovarianceFunction kernel, double lambda, bool scaleInputs, out double rmsError, out double looCvRMSE) {
|
---|
127 | var model = KernelRidgeRegressionModel.Create(problemData.Dataset, problemData.TargetVariable, problemData.AllowedInputVariables, problemData.TrainingIndices, scaleInputs, kernel, lambda);
|
---|
128 | rmsError = double.NaN;
|
---|
129 | if (problemData.TestIndices.Any()) {
|
---|
130 | rmsError = Math.Sqrt(model.GetEstimatedValues(problemData.Dataset, problemData.TestIndices)
|
---|
131 | .Zip(problemData.TargetVariableTestValues, (a, b) => (a - b) * (a - b))
|
---|
132 | .Average());
|
---|
133 | }
|
---|
134 | var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
135 | solution.Model.Name = "Kernel ridge regression model";
|
---|
136 | solution.Name = SolutionResultName;
|
---|
137 | looCvRMSE = model.LooCvRMSE;
|
---|
138 | return solution;
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|