[11514] | 1 | using System;
|
---|
| 2 | using System.Linq;
|
---|
[17321] | 3 | using System.Threading;
|
---|
[11514] | 4 | using HeuristicLab.Analysis;
|
---|
| 5 | using HeuristicLab.Data;
|
---|
| 6 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 7 | using HeuristicLab.Problems.Instances.QAPLIB;
|
---|
| 8 | using HeuristicLab.Problems.QuadraticAssignment;
|
---|
| 9 | using HeuristicLab.Random;
|
---|
| 10 |
|
---|
| 11 | public class GAQAPScript : HeuristicLab.Scripting.CSharpScriptBase {
|
---|
| 12 | public override void Main() {
|
---|
| 13 | DateTime start = DateTime.UtcNow;
|
---|
| 14 |
|
---|
| 15 | QuadraticAssignmentProblem qap;
|
---|
| 16 | if (vars.Contains("qap")) qap = vars.qap;
|
---|
| 17 | else {
|
---|
| 18 | var provider = new DreznerQAPInstanceProvider();
|
---|
| 19 | var instance = provider.GetDataDescriptors().Single(x => x.Name == "dre56");
|
---|
| 20 | var data = provider.LoadData(instance);
|
---|
| 21 | qap = new QuadraticAssignmentProblem();
|
---|
| 22 | qap.Load(data);
|
---|
| 23 | vars.qap = qap;
|
---|
| 24 | }
|
---|
| 25 |
|
---|
| 26 | const uint seed = 0;
|
---|
| 27 | const int popSize = 100;
|
---|
| 28 | const int generations = 1000;
|
---|
| 29 | const double mutationRate = 0.05;
|
---|
| 30 |
|
---|
| 31 | var random = new MersenneTwister(seed);
|
---|
| 32 | var population = new Permutation[popSize];
|
---|
| 33 | var qualities = new double[popSize];
|
---|
| 34 | var nextGen = new Permutation[popSize];
|
---|
| 35 | var nextQual = new double[popSize];
|
---|
| 36 |
|
---|
| 37 | var qualityChart = new DataTable("Quality Chart");
|
---|
| 38 | var qualityRow = new DataRow("Best Quality");
|
---|
| 39 | qualityChart.Rows.Add(qualityRow);
|
---|
| 40 | vars.qualityChart = qualityChart;
|
---|
| 41 |
|
---|
| 42 | for (int i = 0; i < popSize; i++) {
|
---|
| 43 | population[i] = new Permutation(PermutationTypes.Absolute, qap.Weights.Rows, random);
|
---|
[17321] | 44 | qualities[i] = qap.Evaluate(population[i], CancellationToken.None);
|
---|
[11514] | 45 | }
|
---|
| 46 | var bestQuality = qualities.Min();
|
---|
| 47 | var bestQualityGeneration = 0;
|
---|
| 48 |
|
---|
| 49 | for (int g = 0; g < generations; g++) {
|
---|
| 50 | var parents = population.SampleProportional(random, 2 * popSize, qualities, windowing: true, inverseProportional: true).ToArray();
|
---|
| 51 | for (int i = 0; i < popSize; i++) {
|
---|
| 52 | nextGen[i] = PartiallyMatchedCrossover.Apply(random, parents[i * 2], parents[i * 2 + 1]);
|
---|
| 53 | if (random.NextDouble() < mutationRate) Swap2Manipulator.Apply(random, nextGen[i]);
|
---|
[17321] | 54 | nextQual[i] = qap.Evaluate(nextGen[i], CancellationToken.None);
|
---|
[11514] | 55 | if (nextQual[i] < bestQuality) {
|
---|
| 56 | bestQuality = nextQual[i];
|
---|
| 57 | bestQualityGeneration = g;
|
---|
| 58 | }
|
---|
| 59 | }
|
---|
| 60 | qualityRow.Values.Add(bestQuality);
|
---|
| 61 | Array.Copy(nextGen, population, popSize);
|
---|
| 62 | Array.Copy(nextQual, qualities, popSize);
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | vars.elapsed = new TimeSpanValue(DateTime.UtcNow - start);
|
---|
| 66 | vars.bestQuality = bestQuality;
|
---|
| 67 | vars.bestQualityFoundAt = bestQualityGeneration;
|
---|
| 68 | }
|
---|
| 69 | } |
---|