1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Text;
|
---|
25 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
26 | namespace HeuristicLab.Random.Tests {
|
---|
27 |
|
---|
28 | [TestClass()]
|
---|
29 | public class RandomEnumerableSampleTest {
|
---|
30 | [TestMethod]
|
---|
31 | [TestCategory("General")]
|
---|
32 | [TestProperty("Time", "short")]
|
---|
33 | public void SampleProportionalWithoutRepetitionTest() {
|
---|
34 | {
|
---|
35 | // select 1 of 100 uniformly (weights = 0)
|
---|
36 | var items = Enumerable.Range(0, 100);
|
---|
37 | var random = new MersenneTwister(31415);
|
---|
38 | var weights = Enumerable.Repeat(0.0, 100);
|
---|
39 | for (int i = 0; i < 1000; i++) {
|
---|
40 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
41 | Assert.AreEqual(sample.Count(), 1);
|
---|
42 | }
|
---|
43 | }
|
---|
44 | {
|
---|
45 | // select 1 of 1 uniformly (weights = 0)
|
---|
46 | var items = Enumerable.Range(0, 1);
|
---|
47 | var random = new MersenneTwister(31415);
|
---|
48 | var weights = Enumerable.Repeat(0.0, 1);
|
---|
49 | for (int i = 0; i < 1000; i++) {
|
---|
50 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
51 | Assert.AreEqual(sample.Count(), 1);
|
---|
52 | }
|
---|
53 | }
|
---|
54 | {
|
---|
55 | // select 1 of 2 non-uniformly (weights = 1, 2)
|
---|
56 | var items = Enumerable.Range(0, 2);
|
---|
57 | var random = new MersenneTwister(31415);
|
---|
58 | var weights = new double[] { 1.0, 2.0 };
|
---|
59 | var zeroSelected = 0;
|
---|
60 | for (int i = 0; i < 1000; i++) {
|
---|
61 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
62 | Assert.AreEqual(sample.Count(), 1);
|
---|
63 | if (sample[0] == 0) zeroSelected++;
|
---|
64 | }
|
---|
65 | Assert.IsTrue(zeroSelected > 0 && zeroSelected < 1000);
|
---|
66 | }
|
---|
67 | {
|
---|
68 | // select 2 of 2 non-uniformly (weights = 1, 1000)
|
---|
69 | var items = Enumerable.Range(0, 2);
|
---|
70 | var random = new MersenneTwister(31415);
|
---|
71 | var weights = new double[] { 1.0, 1000.0 };
|
---|
72 | for (int i = 0; i < 1000; i++) {
|
---|
73 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 2, weights, false, false).ToArray();
|
---|
74 | Assert.AreEqual(sample.Count(), 2);
|
---|
75 | Assert.AreEqual(sample.Distinct().Count(), 2);
|
---|
76 | }
|
---|
77 | }
|
---|
78 | {
|
---|
79 | // select 2 from 1 uniformly (weights = 0), this does not throw an exception but instead returns a sample with 1 element!
|
---|
80 | var items = Enumerable.Range(0, 1);
|
---|
81 | var random = new MersenneTwister(31415);
|
---|
82 | var weights = Enumerable.Repeat(0.0, 1);
|
---|
83 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 2, weights, false, false).ToArray();
|
---|
84 | Assert.AreEqual(sample.Count(), 1);
|
---|
85 | }
|
---|
86 |
|
---|
87 | {
|
---|
88 | // select 10 of 100 uniformly (weights = 0)
|
---|
89 | var items = Enumerable.Range(0, 100);
|
---|
90 | var random = new MersenneTwister(31415);
|
---|
91 | var weights = Enumerable.Repeat(0.0, 100);
|
---|
92 | for (int i = 0; i < 1000; i++) {
|
---|
93 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 10, weights, false, false).ToArray();
|
---|
94 | Assert.AreEqual(sample.Count(), 10);
|
---|
95 | Assert.AreEqual(sample.Distinct().Count(), 10);
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | {
|
---|
100 | // select 100 of 100 uniformly (weights = 0)
|
---|
101 | var items = Enumerable.Range(0, 100);
|
---|
102 | var random = new MersenneTwister(31415);
|
---|
103 | var weights = Enumerable.Repeat(0.0, 100);
|
---|
104 | for (int i = 0; i < 1000; i++) {
|
---|
105 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 100, weights, false, false).ToArray();
|
---|
106 | Assert.AreEqual(sample.Count(), 100);
|
---|
107 | Assert.AreEqual(sample.Distinct().Count(), 100);
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | {
|
---|
112 | // select 10 of 10 uniformly (weights = 1)
|
---|
113 | var items = Enumerable.Range(0, 10);
|
---|
114 | var random = new MersenneTwister(31415);
|
---|
115 | var weights = Enumerable.Repeat(1.0, 10);
|
---|
116 | for (int i = 0; i < 1000; i++) {
|
---|
117 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 10, weights, false, false).ToArray();
|
---|
118 | Assert.AreEqual(sample.Count(), 10);
|
---|
119 | Assert.AreEqual(sample.Distinct().Count(), 10);
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | {
|
---|
124 | // select 10 of 10 uniformly (weights = 1)
|
---|
125 | var items = Enumerable.Range(0, 10);
|
---|
126 | var random = new MersenneTwister(31415);
|
---|
127 | var weights = Enumerable.Repeat(1.0, 10);
|
---|
128 | for (int i = 0; i < 1000; i++) {
|
---|
129 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 10, weights, true, false).ToArray();
|
---|
130 | Assert.AreEqual(sample.Count(), 10);
|
---|
131 | Assert.AreEqual(sample.Distinct().Count(), 10);
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | {
|
---|
136 | // select 10 of 10 uniformly (weights = 1)
|
---|
137 | var items = Enumerable.Range(0, 10);
|
---|
138 | var random = new MersenneTwister(31415);
|
---|
139 | var weights = Enumerable.Repeat(1.0, 10);
|
---|
140 | for (int i = 0; i < 1000; i++) {
|
---|
141 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 10, weights, true, true).ToArray();
|
---|
142 | Assert.AreEqual(sample.Count(), 10);
|
---|
143 | Assert.AreEqual(sample.Distinct().Count(), 10);
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | {
|
---|
148 | // select 5 of 10 uniformly (weights = 0..n)
|
---|
149 | var items = Enumerable.Range(0, 10);
|
---|
150 | var random = new MersenneTwister(31415);
|
---|
151 | var weights = new double[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
---|
152 | for (int i = 0; i < 1000; i++) {
|
---|
153 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 5, weights, false, false).ToArray();
|
---|
154 | Assert.AreEqual(sample.Count(), 5);
|
---|
155 | Assert.AreEqual(sample.Distinct().Count(), 5);
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | {
|
---|
160 | // select 5 of 10 uniformly (weights = 0..n)
|
---|
161 | var items = Enumerable.Range(0, 10);
|
---|
162 | var random = new MersenneTwister(31415);
|
---|
163 | var weights = new double[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
---|
164 | for (int i = 0; i < 1000; i++) {
|
---|
165 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 5, weights, true, false).ToArray();
|
---|
166 | Assert.AreEqual(sample.Count(), 5);
|
---|
167 | Assert.AreEqual(sample.Distinct().Count(), 5);
|
---|
168 | }
|
---|
169 | }
|
---|
170 |
|
---|
171 | {
|
---|
172 | // select 5 of 10 uniformly (weights = 0..n)
|
---|
173 | var items = Enumerable.Range(0, 10);
|
---|
174 | var random = new MersenneTwister(31415);
|
---|
175 | var weights = new double[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
---|
176 | for (int i = 0; i < 1000; i++) {
|
---|
177 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 5, weights, true, true).ToArray();
|
---|
178 | Assert.AreEqual(sample.Count(), 5);
|
---|
179 | Assert.AreEqual(sample.Distinct().Count(), 5);
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | {
|
---|
184 | // select 10 of 100 uniformly (weights = 1)
|
---|
185 | // repeat 1000000 times and calculate statistics
|
---|
186 | var items = Enumerable.Range(0, 100);
|
---|
187 | var random = new MersenneTwister(31415);
|
---|
188 | var weights = Enumerable.Repeat(1.0, 100);
|
---|
189 | var selectionCount = new int[100, 100]; // frequency of selecting item at pos
|
---|
190 | for (int i = 0; i < 1000000; i++) {
|
---|
191 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 100, weights, false, false).ToArray();
|
---|
192 | Assert.AreEqual(sample.Count(), 100);
|
---|
193 | Assert.AreEqual(sample.Distinct().Count(), 100);
|
---|
194 |
|
---|
195 | int pos = 0;
|
---|
196 | foreach (var item in sample) {
|
---|
197 | selectionCount[item, pos]++;
|
---|
198 | pos++;
|
---|
199 | }
|
---|
200 | }
|
---|
201 | var sb = new StringBuilder();
|
---|
202 | for (int item = 0; item < 100; item++) {
|
---|
203 | for (int pos = 0; pos < 100; pos++) {
|
---|
204 | sb.AppendFormat("{0} ", selectionCount[item, pos]);
|
---|
205 | }
|
---|
206 | sb.AppendLine();
|
---|
207 | }
|
---|
208 | Console.WriteLine(sb.ToString());
|
---|
209 | }
|
---|
210 | }
|
---|
211 | }
|
---|
212 | }
|
---|