Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2521_ProblemRefactoring/HeuristicLab.Problems.TestFunctions/3.3/Functions/SchafferF6.cs @ 16749

Last change on this file since 16749 was 16726, checked in by abeham, 6 years ago

#2521: fixed single-objective test functions

File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HEAL.Attic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.RealVectorEncoding;
28
29namespace HeuristicLab.Problems.TestFunctions {
30  /// <summary>
31  /// The Schaffer F6 function y = 0.5 + (Sin^2(Sqrt(x^2 + y^2)) - 0.5) / (1 + 0.001 * (x^2 + y^2))^2 is a multimodal function that has its optimal value 0 at the origin.
32  /// </summary
33  [Item("SchafferF6", "Evaluates the Schaffer F6 function y = 0.5 + (Sin^2(Sqrt(x^2 + y^2)) - 0.5) / (1 + 0.001 * (x^2 + y^2))^2 on a given point. The optimum of this function is 0 at the origin.")]
34  [StorableType("FC160F97-DB25-403E-882F-7BEBA0F01E01")]
35  public class SchafferF6 : SingleObjectiveTestFunction {
36    /// <summary>
37    /// Returns false as the Schaffer F6 function is a minimization problem.
38    /// </summary>
39    public override bool Maximization {
40      get { return false; }
41    }
42    /// <summary>
43    /// Gets the optimum function value (0).
44    /// </summary>
45    public override double BestKnownQuality {
46      get { return 0; }
47    }
48    /// <summary>
49    /// Gets the lower and upper bound of the function.
50    /// </summary>
51    public override DoubleMatrix Bounds {
52      get { return new DoubleMatrix(new double[,] { { -100, 100 } }); }
53    }
54    /// <summary>
55    /// Gets the minimum problem size (2).
56    /// </summary>
57    public override int MinimumProblemSize {
58      get { return 2; }
59    }
60    /// <summary>
61    /// Gets the maximum problem size (2).
62    /// </summary>
63    public override int MaximumProblemSize {
64      get { return 2; }
65    }
66
67    public override RealVector GetBestKnownSolution(int dimension) {
68      return new RealVector(dimension);
69    }
70
71    [StorableConstructor]
72    protected SchafferF6(StorableConstructorFlag _) : base(_) { }
73    protected SchafferF6(SchafferF6 original, Cloner cloner) : base(original, cloner) { }
74    public SchafferF6() : base() { }
75
76    public override IDeepCloneable Clone(Cloner cloner) {
77      return new SchafferF6(this, cloner);
78    }
79
80    /// <summary>
81    /// Evaluates the test function for a specific <paramref name="point"/>.
82    /// </summary>
83    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
84    /// <returns>The result value of the Schaffer F6 function at the given point.</returns>
85    public static double Apply(RealVector point) {
86      if (point.Length != 2) throw new ArgumentException("The SchafferF6 can only be evaluated for two dimenional vectors");
87      var sumSquare = point[0] * point[0] + point[1] * point[1];
88      var sin = Math.Sin(Math.Sqrt(sumSquare));
89      var nom = sin * sin - 0.5;
90      var denom = (1 + 0.001 * sumSquare) * (1 + 0.001 * sumSquare);
91      return 0.5 + nom / denom;
92    }
93
94    /// <summary>
95    /// Evaluates the test function for a specific <paramref name="point"/>.
96    /// </summary>
97    /// <remarks>Calls <see cref="Apply"/>.</remarks>
98    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
99    /// <returns>The result value of the Rastrigin function at the given point.</returns>
100    public override double Evaluate(RealVector point) {
101      return Apply(point);
102    }
103  }
104}
Note: See TracBrowser for help on using the repository browser.