1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HEAL.Attic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.TestFunctions {
|
---|
30 | /// <summary>
|
---|
31 | /// The Schaffer F6 function y = 0.5 + (Sin^2(Sqrt(x^2 + y^2)) - 0.5) / (1 + 0.001 * (x^2 + y^2))^2 is a multimodal function that has its optimal value 0 at the origin.
|
---|
32 | /// </summary
|
---|
33 | [Item("SchafferF6", "Evaluates the Schaffer F6 function y = 0.5 + (Sin^2(Sqrt(x^2 + y^2)) - 0.5) / (1 + 0.001 * (x^2 + y^2))^2 on a given point. The optimum of this function is 0 at the origin.")]
|
---|
34 | [StorableType("FC160F97-DB25-403E-882F-7BEBA0F01E01")]
|
---|
35 | public class SchafferF6 : SingleObjectiveTestFunction {
|
---|
36 | /// <summary>
|
---|
37 | /// Returns false as the Schaffer F6 function is a minimization problem.
|
---|
38 | /// </summary>
|
---|
39 | public override bool Maximization {
|
---|
40 | get { return false; }
|
---|
41 | }
|
---|
42 | /// <summary>
|
---|
43 | /// Gets the optimum function value (0).
|
---|
44 | /// </summary>
|
---|
45 | public override double BestKnownQuality {
|
---|
46 | get { return 0; }
|
---|
47 | }
|
---|
48 | /// <summary>
|
---|
49 | /// Gets the lower and upper bound of the function.
|
---|
50 | /// </summary>
|
---|
51 | public override DoubleMatrix Bounds {
|
---|
52 | get { return new DoubleMatrix(new double[,] { { -100, 100 } }); }
|
---|
53 | }
|
---|
54 | /// <summary>
|
---|
55 | /// Gets the minimum problem size (2).
|
---|
56 | /// </summary>
|
---|
57 | public override int MinimumProblemSize {
|
---|
58 | get { return 2; }
|
---|
59 | }
|
---|
60 | /// <summary>
|
---|
61 | /// Gets the maximum problem size (2).
|
---|
62 | /// </summary>
|
---|
63 | public override int MaximumProblemSize {
|
---|
64 | get { return 2; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public override RealVector GetBestKnownSolution(int dimension) {
|
---|
68 | return new RealVector(dimension);
|
---|
69 | }
|
---|
70 |
|
---|
71 | [StorableConstructor]
|
---|
72 | protected SchafferF6(StorableConstructorFlag _) : base(_) { }
|
---|
73 | protected SchafferF6(SchafferF6 original, Cloner cloner) : base(original, cloner) { }
|
---|
74 | public SchafferF6() : base() { }
|
---|
75 |
|
---|
76 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
77 | return new SchafferF6(this, cloner);
|
---|
78 | }
|
---|
79 |
|
---|
80 | /// <summary>
|
---|
81 | /// Evaluates the test function for a specific <paramref name="point"/>.
|
---|
82 | /// </summary>
|
---|
83 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
84 | /// <returns>The result value of the Schaffer F6 function at the given point.</returns>
|
---|
85 | public static double Apply(RealVector point) {
|
---|
86 | if (point.Length != 2) throw new ArgumentException("The SchafferF6 can only be evaluated for two dimenional vectors");
|
---|
87 | var sumSquare = point[0] * point[0] + point[1] * point[1];
|
---|
88 | var sin = Math.Sin(Math.Sqrt(sumSquare));
|
---|
89 | var nom = sin * sin - 0.5;
|
---|
90 | var denom = (1 + 0.001 * sumSquare) * (1 + 0.001 * sumSquare);
|
---|
91 | return 0.5 + nom / denom;
|
---|
92 | }
|
---|
93 |
|
---|
94 | /// <summary>
|
---|
95 | /// Evaluates the test function for a specific <paramref name="point"/>.
|
---|
96 | /// </summary>
|
---|
97 | /// <remarks>Calls <see cref="Apply"/>.</remarks>
|
---|
98 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
99 | /// <returns>The result value of the Rastrigin function at the given point.</returns>
|
---|
100 | public override double Evaluate(RealVector point) {
|
---|
101 | return Apply(point);
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|