1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HEAL.Attic;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.LinearAssignment {
|
---|
32 | [Item("LinearAssignmentProblemSolver", "Uses the hungarian algorithm to solve linear assignment problems.")]
|
---|
33 | [StorableType("ABF202CC-44E4-4208-9EBF-1A104806358F")]
|
---|
34 | public sealed class LinearAssignmentProblemSolver : SingleSuccessorOperator, ISingleObjectiveOperator {
|
---|
35 | private const int UNASSIGNED = -1;
|
---|
36 |
|
---|
37 | public IValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
38 | get { return (IValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
39 | }
|
---|
40 | public ILookupParameter<DoubleMatrix> CostsParameter {
|
---|
41 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Costs"]; }
|
---|
42 | }
|
---|
43 | public ILookupParameter<Permutation> AssignmentParameter {
|
---|
44 | get { return (ILookupParameter<Permutation>)Parameters["Assignment"]; }
|
---|
45 | }
|
---|
46 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
47 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | [StorableConstructor]
|
---|
51 | private LinearAssignmentProblemSolver(StorableConstructorFlag _) : base(_) { }
|
---|
52 | private LinearAssignmentProblemSolver(LinearAssignmentProblemSolver original, Cloner cloner) : base(original, cloner) { }
|
---|
53 | public LinearAssignmentProblemSolver()
|
---|
54 | : base() {
|
---|
55 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "Whether the costs should be maximized or minimized."));
|
---|
56 | Parameters.Add(new LookupParameter<DoubleMatrix>("Costs", LinearAssignmentProblem.CostsDescription));
|
---|
57 | Parameters.Add(new LookupParameter<Permutation>("Assignment", "The assignment solution to create."));
|
---|
58 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the solution."));
|
---|
59 | }
|
---|
60 |
|
---|
61 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
62 | return new LinearAssignmentProblemSolver(this, cloner);
|
---|
63 | }
|
---|
64 |
|
---|
65 | [StorableHook(HookType.AfterDeserialization)]
|
---|
66 | private void AfterDeserialization() {
|
---|
67 | // BackwardsCompatibility3.3
|
---|
68 | #region Backwards compatible code, remove with 3.4
|
---|
69 | if (!Parameters.ContainsKey("Maximization"))
|
---|
70 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "Whether the costs should be maximized or minimized."));
|
---|
71 | #endregion
|
---|
72 | }
|
---|
73 |
|
---|
74 | public override IOperation Apply() {
|
---|
75 | var costs = CostsParameter.ActualValue;
|
---|
76 | var maximization = MaximizationParameter.ActualValue.Value;
|
---|
77 | if (maximization) {
|
---|
78 | costs = (DoubleMatrix)costs.Clone();
|
---|
79 | for (int i = 0; i < costs.Rows; i++)
|
---|
80 | for (int j = 0; j < costs.Rows; j++)
|
---|
81 | costs[i, j] = -costs[i, j];
|
---|
82 | }
|
---|
83 | double quality;
|
---|
84 | var solution = Solve(costs, out quality);
|
---|
85 |
|
---|
86 | AssignmentParameter.ActualValue = new Permutation(PermutationTypes.Absolute, solution);
|
---|
87 | if (maximization) quality = -quality;
|
---|
88 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
89 |
|
---|
90 | return base.Apply();
|
---|
91 | }
|
---|
92 |
|
---|
93 | /// <summary>
|
---|
94 | /// Uses the Hungarian algorithm to solve the linear assignment problem (LAP).
|
---|
95 | /// The LAP is defined as minimize f(p) = Sum(i = 1..N, c_{i, p(i)}) for a permutation p and an NxN cost matrix.
|
---|
96 | ///
|
---|
97 | /// The runtime complexity of the algorithm is O(n^3). The algorithm is deterministic and terminates
|
---|
98 | /// returning one of the optimal solutions and the corresponding quality.
|
---|
99 | /// </summary>
|
---|
100 | /// <remarks>
|
---|
101 | /// The algorithm is written similar to the fortran implementation given in http://www.seas.upenn.edu/qaplib/code.d/qapglb.f
|
---|
102 | /// </remarks>
|
---|
103 | /// <param name="costs">An NxN costs matrix.</param>
|
---|
104 | /// <param name="quality">The quality value of the optimal solution.</param>
|
---|
105 | /// <returns>The optimal solution.</returns>
|
---|
106 | public static int[] Solve(DoubleMatrix costs, out double quality) {
|
---|
107 | int length = costs.Rows;
|
---|
108 | // solve the linear assignment problem f(p) = Sum(i = 1..|p|, c_{i, p(i)})
|
---|
109 |
|
---|
110 | int[] rowAssign = new int[length], colAssign = new int[length];
|
---|
111 | double[] dualCol = new double[length], dualRow = new double[length];
|
---|
112 | for (int i = 0; i < length; i++) { // mark all positions as untouched
|
---|
113 | rowAssign[i] = UNASSIGNED;
|
---|
114 | colAssign[i] = UNASSIGNED;
|
---|
115 | }
|
---|
116 |
|
---|
117 | for (int i = 0; i < length; i++) { // find the minimum (base) level for each row
|
---|
118 | double min = costs[i, 0];
|
---|
119 | int minCol = 0;
|
---|
120 | dualCol[0] = min;
|
---|
121 | for (int j = 1; j < length; j++) {
|
---|
122 | if (costs[i, j] <= min) {
|
---|
123 | min = costs[i, j];
|
---|
124 | minCol = j;
|
---|
125 | }
|
---|
126 | if (costs[i, j] > dualCol[j])
|
---|
127 | dualCol[j] = costs[i, j];
|
---|
128 | }
|
---|
129 | dualRow[i] = min; // this will be the value of our dual variable
|
---|
130 | if (colAssign[minCol] == UNASSIGNED) {
|
---|
131 | colAssign[minCol] = i;
|
---|
132 | rowAssign[i] = minCol;
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | for (int j = 0; j < length; j++) { // calculate the second dual variable
|
---|
137 | if (colAssign[j] != UNASSIGNED) dualCol[j] = 0;
|
---|
138 | else {
|
---|
139 | int minRow = 0;
|
---|
140 | for (int i = 0; i < length; i++) {
|
---|
141 | if (dualCol[j] > 0 && costs[i, j] - dualRow[i] < dualCol[j]) {
|
---|
142 | dualCol[j] = costs[i, j] - dualRow[i]; // the value is the original costs minus the first dual value
|
---|
143 | minRow = i;
|
---|
144 | }
|
---|
145 | }
|
---|
146 | if (rowAssign[minRow] == UNASSIGNED) {
|
---|
147 | colAssign[j] = minRow;
|
---|
148 | rowAssign[minRow] = j;
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | // at this point costs_ij - dualRow_i - dualColumn_j results in a matrix that has at least one zero in every row and every column
|
---|
154 |
|
---|
155 | for (int i = 0; i < length; i++) { // try to make the remaining assignments
|
---|
156 | if (rowAssign[i] == UNASSIGNED) {
|
---|
157 | double min = dualRow[i];
|
---|
158 | for (int j = 0; j < length; j++) {
|
---|
159 | if (colAssign[j] == UNASSIGNED && (costs[i, j] - min - dualCol[j]).IsAlmost(0.0)) {
|
---|
160 | rowAssign[i] = j;
|
---|
161 | colAssign[j] = i;
|
---|
162 | break;
|
---|
163 | }
|
---|
164 | }
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | bool[] marker = new bool[length];
|
---|
169 | double[] dplus = new double[length], dminus = new double[length];
|
---|
170 | int[] rowMarks = new int[length];
|
---|
171 |
|
---|
172 | for (int u = 0; u < length; u++) {
|
---|
173 | if (rowAssign[u] == UNASSIGNED) {
|
---|
174 | for (int i = 0; i < length; i++) {
|
---|
175 | rowMarks[i] = u;
|
---|
176 | marker[i] = false;
|
---|
177 | dplus[i] = double.MaxValue;
|
---|
178 | dminus[i] = costs[u, i] - dualRow[u] - dualCol[i];
|
---|
179 | }
|
---|
180 |
|
---|
181 | dplus[u] = 0;
|
---|
182 | int index = -1;
|
---|
183 | double minD = double.MaxValue;
|
---|
184 | while (true) {
|
---|
185 | minD = double.MaxValue;
|
---|
186 | for (int i = 0; i < length; i++) {
|
---|
187 | if (!marker[i] && dminus[i] < minD) {
|
---|
188 | minD = dminus[i];
|
---|
189 | index = i;
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | if (colAssign[index] == UNASSIGNED) break;
|
---|
194 | marker[index] = true;
|
---|
195 | dplus[colAssign[index]] = minD;
|
---|
196 | for (int i = 0; i < length; i++) {
|
---|
197 | if (marker[i]) continue;
|
---|
198 | double compare = minD + costs[colAssign[index], i] - dualCol[i] - dualRow[colAssign[index]];
|
---|
199 | if (dminus[i] > compare) {
|
---|
200 | dminus[i] = compare;
|
---|
201 | rowMarks[i] = colAssign[index];
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | } // while(true)
|
---|
206 |
|
---|
207 | while (true) {
|
---|
208 | colAssign[index] = rowMarks[index];
|
---|
209 | var ind = rowAssign[rowMarks[index]];
|
---|
210 | rowAssign[rowMarks[index]] = index;
|
---|
211 | if (rowMarks[index] == u) break;
|
---|
212 |
|
---|
213 | index = ind;
|
---|
214 | }
|
---|
215 |
|
---|
216 | for (int i = 0; i < length; i++) {
|
---|
217 | if (dplus[i] < double.MaxValue)
|
---|
218 | dualRow[i] += minD - dplus[i];
|
---|
219 | if (dminus[i] < minD)
|
---|
220 | dualCol[i] += dminus[i] - minD;
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | quality = 0;
|
---|
226 | for (int i = 0; i < length; i++) {
|
---|
227 | quality += costs[i, rowAssign[i]];
|
---|
228 | }
|
---|
229 | return rowAssign;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|