1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Random;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
30 | internal static class ValueGenerator {
|
---|
31 |
|
---|
32 | /// <summary>
|
---|
33 | /// Generates uniformly distributed values between start and end (inclusive!)
|
---|
34 | /// </summary>
|
---|
35 | /// <param name="seed">The seed for the random number generator</param>
|
---|
36 | /// <param name="n">Number of values to generate.</param>
|
---|
37 | /// <param name="start">The lower value (inclusive)</param>
|
---|
38 | /// <param name="end">The upper value (inclusive)</param>
|
---|
39 | /// <returns>An enumerable including n values in [start, end]</returns>
|
---|
40 | public static IEnumerable<double> GenerateUniformDistributedValues(int seed, int n, double start, double end) {
|
---|
41 | var rand = new FastRandom(seed);
|
---|
42 | for (int i = 0; i < n; i++) {
|
---|
43 | // we need to return a random value including end.
|
---|
44 | // so we cannot use rand.NextDouble() as it returns a value strictly smaller than 1.
|
---|
45 | double r = rand.NextUInt() / (double)uint.MaxValue; // r \in [0,1]
|
---|
46 | yield return r * (end - start) + start;
|
---|
47 | }
|
---|
48 | }
|
---|
49 |
|
---|
50 | /// <summary>
|
---|
51 | /// Generates normally distributed values sampling from N(mu, sigma)
|
---|
52 | /// </summary>
|
---|
53 | /// <param name="seed">The seed for the random number generator</param>
|
---|
54 | /// <param name="n">Number of values to generate.</param>
|
---|
55 | /// <param name="mu">The mu parameter of the normal distribution</param>
|
---|
56 | /// <param name="sigma">The sigma parameter of the normal distribution</param>
|
---|
57 | /// <returns>An enumerable including n values ~ N(mu, sigma)</returns>
|
---|
58 | public static IEnumerable<double> GenerateNormalDistributedValues(int seed, int n, double mu, double sigma) {
|
---|
59 | var rand = new FastRandom(seed);
|
---|
60 | for (int i = 0; i < n; i++)
|
---|
61 | yield return NormalDistributedRandom.NextDouble(rand, mu, sigma);
|
---|
62 | }
|
---|
63 |
|
---|
64 | // Generate the cartesian product.
|
---|
65 | // The result is transposed, therefore the inner lists represent a column of values instead of a combination-pair.
|
---|
66 | public static IEnumerable<IEnumerable<double>> GenerateAllCombinationsOfValuesInLists(List<List<double>> lists) {
|
---|
67 | List<List<double>> allCombinations = new List<List<double>>();
|
---|
68 | if (lists.Count < 1) {
|
---|
69 | return allCombinations;
|
---|
70 | }
|
---|
71 |
|
---|
72 | List<IEnumerator<double>> enumerators = new List<IEnumerator<double>>();
|
---|
73 | foreach (var list in lists) {
|
---|
74 | allCombinations.Add(new List<double>());
|
---|
75 | enumerators.Add(list.GetEnumerator());
|
---|
76 | }
|
---|
77 |
|
---|
78 | bool finished = !enumerators.All(x => x.MoveNext());
|
---|
79 |
|
---|
80 | while (!finished) {
|
---|
81 | GetCurrentCombination(enumerators, allCombinations);
|
---|
82 | finished = MoveNext(enumerators, lists);
|
---|
83 | }
|
---|
84 | return allCombinations;
|
---|
85 | }
|
---|
86 |
|
---|
87 | private static bool MoveNext(List<IEnumerator<double>> enumerators, List<List<double>> lists) {
|
---|
88 | int cur = enumerators.Count - 1;
|
---|
89 | while (cur >= 0 && !enumerators[cur].MoveNext()) {
|
---|
90 | enumerators[cur] = lists[cur].GetEnumerator();
|
---|
91 | enumerators[cur].MoveNext();
|
---|
92 | cur--;
|
---|
93 | }
|
---|
94 | return cur < 0;
|
---|
95 | }
|
---|
96 |
|
---|
97 | private static void GetCurrentCombination(List<IEnumerator<double>> enumerators, List<List<double>> allCombinations) {
|
---|
98 | for (int i = 0; i < enumerators.Count(); i++) {
|
---|
99 | allCombinations[i].Add(enumerators[i].Current);
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | public static List<double> GenerateNoise(IEnumerable<double> target, IRandom rand, double? noiseRatio) {
|
---|
104 | if (noiseRatio == null) return null;
|
---|
105 |
|
---|
106 | var targetNoise = new List<double>();
|
---|
107 | var targetSigma = target.StandardDeviation();
|
---|
108 | var noisePrng = new NormalDistributedRandomPolar(rand, 0, targetSigma * Math.Sqrt(noiseRatio.Value / (1.0 - noiseRatio.Value)));
|
---|
109 |
|
---|
110 | targetNoise.AddRange(target.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
111 | return targetNoise;
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|