[16264] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17226] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[16264] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[17226] | 25 | using HeuristicLab.Common;
|
---|
[16264] | 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[16431] | 29 | public class AircraftMaximumLift : ArtificialRegressionDataDescriptor {
|
---|
[16394] | 30 | public override string Name { get { return "Aircraft Maximum Lift Coefficient f(X) = x1 - 1/4 x4 x5 x6 (4 + 0.1 x2/x3 - x2²/x3²) + x13 x14/x15 x18 x7 - x13 x14/x15 x8 + x13 x14/x15 x9 + x16 x17/x15 x18 x10 - x16 x17/x15 x11 + x16 x17/x15 x12"; } }
|
---|
[16264] | 31 |
|
---|
| 32 | public override string Description {
|
---|
| 33 | get {
|
---|
[16394] | 34 | return "Slightly changed version of the problem instance given in: " + Environment.NewLine +
|
---|
| 35 | "Chen Chen, Changtong Luo, Zonglin Jiang, \"A multilevel block building algorithm for fast " +
|
---|
| 36 | "modeling generalized separable systems\", " +
|
---|
| 37 | "pre-print on arXiv: https://arxiv.org/abs/1706.02281 ." + Environment.NewLine +
|
---|
| 38 | "Notably, this problem is missing from the peer-reviewed version of the article in Expert Systems with Applications, Volume 109" + Environment.NewLine +
|
---|
| 39 | "Function: f(X) = x1 - 0.25 x4 x5 x6 (4 + 0.1 x2/x3 - x2²/x3²) + x13 x14/x15 x18 x7 - x13 x14/x15 x8 + x13 x14/x15 x9 + x16 x17/x15 x18 x10 - x16 x17/x15 x11 + x16 x17/x15 x12" + Environment.NewLine +
|
---|
| 40 | "with x1 ∈ [0.4, 0.8]," + Environment.NewLine +
|
---|
| 41 | "x2 ∈ [3, 4]," + Environment.NewLine +
|
---|
| 42 | "x3 ∈ [20, 30]," + Environment.NewLine +
|
---|
| 43 | "x4, x13, x16 ∈ [2, 5]," + Environment.NewLine +
|
---|
| 44 | "x14, x17 ∈ [1, 1.5]," + Environment.NewLine +
|
---|
| 45 | "x15 ∈ [5, 7]," + Environment.NewLine +
|
---|
| 46 | "x18 ∈ [10, 20]," + Environment.NewLine +
|
---|
| 47 | "x8, x11 ∈ [1, 1.5]," + Environment.NewLine +
|
---|
| 48 | "x9, x12 ∈ [1, 2]," + Environment.NewLine +
|
---|
| 49 | "x7, x10 ∈ [0.5, 1.5]." + Environment.NewLine +
|
---|
| 50 | "Values for x5 and x6 have not been specified in the reference paper." +
|
---|
| 51 | " We therefore only use a single (x5) variable in place of ∆αW/c and set x6 to a constant value of 1.0." + Environment.NewLine +
|
---|
| 52 | "The range for x5 is [0..20].";
|
---|
[16264] | 53 | }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | protected override string TargetVariable { get { return "f(X)"; } }
|
---|
[17226] | 57 | protected override string[] VariableNames { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "f(X)", "f(X)_noise" }; } }
|
---|
| 58 | protected override string[] AllowedInputVariables { get { return VariableNames.Except(new string[] { "f(X)", "f(X)_noise" }).ToArray(); } }
|
---|
[16264] | 59 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 60 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
| 61 | protected override int TestPartitionStart { get { return 100; } }
|
---|
| 62 | protected override int TestPartitionEnd { get { return 200; } }
|
---|
| 63 |
|
---|
| 64 | public int Seed { get; private set; }
|
---|
| 65 |
|
---|
| 66 | public AircraftMaximumLift() : this((int)System.DateTime.Now.Ticks) { }
|
---|
| 67 |
|
---|
| 68 | public AircraftMaximumLift(int seed) {
|
---|
| 69 | Seed = seed;
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | protected override List<List<double>> GenerateValues() {
|
---|
| 73 | var rand = new MersenneTwister((uint)Seed);
|
---|
| 74 |
|
---|
| 75 | List<List<double>> data = new List<List<double>>();
|
---|
| 76 | var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList();
|
---|
| 77 |
|
---|
| 78 | var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3.0, 4.0).ToList();
|
---|
| 79 |
|
---|
| 80 | var x3 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 20.0, 30.0).ToList();
|
---|
| 81 |
|
---|
| 82 | var x4 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList();
|
---|
| 83 | var x13 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList();
|
---|
| 84 | var x16 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList();
|
---|
| 85 |
|
---|
| 86 |
|
---|
[16394] | 87 | // in the reference paper \Delta alpha_w/c is replaced by two variables x5*x6.
|
---|
| 88 | var x5 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 20).ToList(); // range for X5 is not specified in the paper, we use [0°..20°] for ∆αW/c
|
---|
| 89 | var x6 = Enumerable.Repeat(1.0, x5.Count).ToList(); // range for X6 is not specified in the paper. In the maximum lift formular there is only a single variable ∆αW/c in place of x5*x6.
|
---|
[16264] | 90 |
|
---|
| 91 | var x7 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList();
|
---|
| 92 | var x10 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList();
|
---|
| 93 |
|
---|
| 94 | var x8 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
| 95 | var x11 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
| 96 |
|
---|
| 97 | var x9 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 2.0).ToList();
|
---|
| 98 | var x12 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 2.0).ToList();
|
---|
| 99 |
|
---|
| 100 | var x14 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
| 101 | var x17 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
| 102 |
|
---|
| 103 | var x15 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList();
|
---|
| 104 |
|
---|
| 105 | var x18 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 10.0, 20.0).ToList();
|
---|
| 106 |
|
---|
[16394] | 107 |
|
---|
[16264] | 108 | List<double> fx = new List<double>();
|
---|
[17226] | 109 | List<double> fx_noise = new List<double>();
|
---|
[16264] | 110 | data.Add(x1);
|
---|
| 111 | data.Add(x2);
|
---|
| 112 | data.Add(x3);
|
---|
| 113 | data.Add(x4);
|
---|
| 114 | data.Add(x5);
|
---|
| 115 | data.Add(x6);
|
---|
| 116 | data.Add(x7);
|
---|
| 117 | data.Add(x8);
|
---|
| 118 | data.Add(x9);
|
---|
| 119 | data.Add(x10);
|
---|
| 120 | data.Add(x11);
|
---|
| 121 | data.Add(x12);
|
---|
| 122 | data.Add(x13);
|
---|
| 123 | data.Add(x14);
|
---|
| 124 | data.Add(x15);
|
---|
| 125 | data.Add(x16);
|
---|
| 126 | data.Add(x17);
|
---|
| 127 | data.Add(x18);
|
---|
| 128 | data.Add(fx);
|
---|
[17226] | 129 | data.Add(fx_noise);
|
---|
[16264] | 130 |
|
---|
| 131 | for (int i = 0; i < x1.Count; i++) {
|
---|
| 132 | double fxi = x1[i];
|
---|
| 133 | fxi = fxi - 0.25 * x4[i] * x5[i] * x6[i] * (4 + 0.1 * (x2[i] / x3[i]) - (x2[i] / x3[i]) * (x2[i] / x3[i]));
|
---|
| 134 | fxi = fxi + x13[i] * (x14[i] / x15[i]) * x18[i] * x7[i];
|
---|
| 135 | fxi = fxi - x13[i] * (x14[i] / x15[i]) * x8[i];
|
---|
| 136 | fxi = fxi + x13[i] * (x14[i] / x15[i]) * x9[i];
|
---|
| 137 | fxi = fxi + x16[i] * (x17[i] / x15[i]) * x18[i] * x10[i];
|
---|
| 138 | fxi = fxi - x16[i] * (x17[i] / x15[i]) * x11[i];
|
---|
| 139 | fxi = fxi + x16[i] * (x17[i] / x15[i]) * x12[i];
|
---|
| 140 |
|
---|
| 141 | fx.Add(fxi);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
[17226] | 144 | var sigma_noise = 0.05 * fx.StandardDeviationPop();
|
---|
| 145 | fx_noise.AddRange(fx.Select(fxi => fxi + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 146 |
|
---|
[16264] | 147 | return data;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | }
|
---|