Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2521_ProblemRefactoring/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus8.cs @ 18242

Last change on this file since 18242 was 18086, checked in by mkommend, 3 years ago

#2521: Merged trunk changes into branch.

File size: 3.5 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus8 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus8() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus8(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus8(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Goldstein 3.55: m*k_G/L**2*(1+sqrt(1+2*E_n*L**2/(m*k_G**2))*cos(theta1-theta2)) | {0}",
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "k" : "k_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return noiseRatio == null ? new[] { "m", "k_G", "L", "E_n", "theta1", "theta2", "k" } : new[] { "m", "k_G", "L", "E_n", "theta1", "theta2", "k", "k_noise" }; }
40    }
41
42    protected override string[] AllowedInputVariables {
43      get { return new[] {"m", "k_G", "L", "E_n", "theta1", "theta2"}; }
44    }
45
46    public int Seed { get; private set; }
47
48    protected override int TrainingPartitionStart { get { return 0; } }
49    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
50    protected override int TestPartitionStart { get { return trainingSamples; } }
51    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
52
53    protected override List<List<double>> GenerateValues() {
54      var rand = new MersenneTwister((uint) Seed);
55
56      var data   = new List<List<double>>();
57      var m      = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var k_G    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59      var L      = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
60      var E_n    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
61      var theta1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList();
62      var theta2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList();
63
64      var k = new List<double>();
65
66      data.Add(m);
67      data.Add(k_G);
68      data.Add(L);
69      data.Add(E_n);
70      data.Add(theta1);
71      data.Add(theta2);
72      data.Add(k);
73
74      for (var i = 0; i < m.Count; i++) {
75        var res = m[i] * k_G[i] / Math.Pow(L[i], 2) *
76                  (1 + Math.Sqrt(1 + 2 * E_n[i] * Math.Pow(L[i], 2) / (m[i] * Math.Pow(k_G[i], 2))) *
77                   Math.Cos(theta1[i] - theta2[i]));
78        k.Add(res);
79      }
80
81      var targetNoise = ValueGenerator.GenerateNoise(k, rand, noiseRatio);
82      if (targetNoise != null) data.Add(targetNoise);
83
84      return data;
85    }
86  }
87}
Note: See TracBrowser for help on using the repository browser.