Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2521_ProblemRefactoring/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus19.cs

Last change on this file was 18086, checked in by mkommend, 3 years ago

#2521: Merged trunk changes into branch.

File size: 3.4 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus19 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus19() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus19(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus19(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Weinberg 15.2.2: -1/(8*pi*G)*(c**4*k_f/r**2 + c**2*H_G**2*(1-2*alpha)) | {0}",
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "pr" : "pr_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return noiseRatio == null ? new[] { "G", "k_f", "r", "H_G", "alpha", "c", "pr" } : new[] { "G", "k_f", "r", "H_G", "alpha", "c", "pr", "pr_noise" }; }
40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"G", "k_f", "r", "H_G", "alpha", "c"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data  = new List<List<double>>();
55      var G     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var k_f   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
57      var r     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var H_G   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60      var c     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
61
62      var pr = new List<double>();
63
64      data.Add(G);
65      data.Add(k_f);
66      data.Add(r);
67      data.Add(H_G);
68      data.Add(alpha);
69      data.Add(c);
70      data.Add(pr);
71
72      for (var i = 0; i < G.Count; i++) {
73        var res = -1.0 / (8 * Math.PI * G[i]) * (Math.Pow(c[i], 4) * k_f[i] / Math.Pow(r[i], 2) +
74                                                 Math.Pow(c[i], 2) * Math.Pow(H_G[i], 2) * (1 - 2 * alpha[i]));
75        pr.Add(res);
76      }
77
78      var targetNoise = ValueGenerator.GenerateNoise(pr, rand, noiseRatio);
79      if (targetNoise != null) data.Add(targetNoise);
80
81      return data;
82    }
83  }
84}
Note: See TracBrowser for help on using the repository browser.