Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2521_ProblemRefactoring/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus12.cs @ 18086

Last change on this file since 18086 was 18086, checked in by mkommend, 3 years ago

#2521: Merged trunk changes into branch.

File size: 3.4 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus12 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus12() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus12(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus12(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Goldstein 8.56: sqrt((p-q*A_vec)**2*c**2+m**2*c**4)+q*Volt | {0}",
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "E_n" : "E_n_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return noiseRatio == null ? new[] { "m", "c", "p", "q", "A_vec", "Volt", "E_n" } : new[] { "m", "c", "p", "q", "A_vec", "Volt", "E_n", "E_n_noise" }; }
40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"m", "c", "p", "q", "A_vec", "Volt"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data  = new List<List<double>>();
55      var m     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var c     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
57      var p     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var q     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var A_vec = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60      var Volt  = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
61
62      var E_n = new List<double>();
63
64      data.Add(m);
65      data.Add(c);
66      data.Add(p);
67      data.Add(q);
68      data.Add(A_vec);
69      data.Add(Volt);
70      data.Add(E_n);
71
72      for (var i = 0; i < m.Count; i++) {
73        var res = Math.Sqrt(Math.Pow(p[i] - q[i] * A_vec[i], 2) * Math.Pow(c[i], 2) +
74                            Math.Pow(m[i], 2) * Math.Pow(c[i], 4)) + q[i] * Volt[i];
75        E_n.Add(res);
76      }
77
78      var targetNoise = ValueGenerator.GenerateNoise(E_n, rand, noiseRatio);
79      if (targetNoise != null) data.Add(targetNoise);
80
81      return data;
82    }
83  }
84}
Note: See TracBrowser for help on using the repository browser.