1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Optimization {
|
---|
28 |
|
---|
29 | [StorableType("d76eb753-5088-4490-ad18-e78d3629c60b")]
|
---|
30 | public enum DominationResult { Dominates, IsDominated, IsNonDominated };
|
---|
31 |
|
---|
32 | public static class DominationCalculator {
|
---|
33 | /// <summary>
|
---|
34 | /// Calculates the best pareto front only. The fast non-dominated sorting algorithm is used
|
---|
35 | /// as described in Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
|
---|
36 | /// A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
|
---|
37 | /// IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
|
---|
38 | /// </summary>
|
---|
39 | /// <remarks>
|
---|
40 | /// When there are plateaus in the fitness landscape several solutions might have exactly
|
---|
41 | /// the same fitness vector. In this case parameter <paramref name="dominateOnEqualQualities"/>
|
---|
42 | /// can be set to true to avoid plateaus becoming too attractive for the search process.
|
---|
43 | /// </remarks>
|
---|
44 | /// <param name="solutions">The solutions of the population.</param>
|
---|
45 | /// <param name="qualities">The qualities resp. fitness for each solution.</param>
|
---|
46 | /// <param name="maximization">The objective in each dimension.</param>
|
---|
47 | /// <param name="dominateOnEqualQualities">Whether solutions of exactly equal quality should dominate one another.</param>
|
---|
48 | /// <returns>The pareto front containing the best solutions and their associated quality resp. fitness.</returns>
|
---|
49 | public static List<Tuple<T, double[]>> CalculateBestParetoFront<T>(T[] solutions, double[][] qualities, bool[] maximization, bool dominateOnEqualQualities = true) {
|
---|
50 | var populationSize = solutions.Length;
|
---|
51 | Dictionary<T, List<int>> dominatedIndividuals;
|
---|
52 | int[] dominationCounter, rank;
|
---|
53 | return CalculateBestFront(solutions, qualities, maximization, dominateOnEqualQualities, populationSize, out dominatedIndividuals, out dominationCounter, out rank);
|
---|
54 | }
|
---|
55 |
|
---|
56 | /// <summary>
|
---|
57 | /// Calculates all pareto fronts. The first in the list is the best front.
|
---|
58 | /// The fast non-dominated sorting algorithm is used as described in
|
---|
59 | /// Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
|
---|
60 | /// A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
|
---|
61 | /// IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
|
---|
62 | /// </summary>
|
---|
63 | /// <remarks>
|
---|
64 | /// When there are plateaus in the fitness landscape several solutions might have exactly
|
---|
65 | /// the same fitness vector. In this case parameter <paramref name="dominateOnEqualQualities"/>
|
---|
66 | /// can be set to true to avoid plateaus becoming too attractive for the search process.
|
---|
67 | /// </remarks>
|
---|
68 | /// <param name="solutions">The solutions of the population.</param>
|
---|
69 | /// <param name="qualities">The qualities resp. fitness for each solution.</param>
|
---|
70 | /// <param name="maximization">The objective in each dimension.</param>
|
---|
71 | /// <param name="rank">The rank of each of the solutions, corresponds to the front it is put in.</param>
|
---|
72 | /// <param name="dominateOnEqualQualities">Whether solutions of exactly equal quality should dominate one another.</param>
|
---|
73 | /// <returns>A sorted list of the pareto fronts from best to worst.</returns>
|
---|
74 | public static List<List<Tuple<T, double[]>>> CalculateAllParetoFronts<T>(T[] solutions, double[][] qualities, bool[] maximization, out int[] rank, bool dominateOnEqualQualities = true) {
|
---|
75 | var populationSize = solutions.Length;
|
---|
76 |
|
---|
77 | Dictionary<T, List<int>> dominatedIndividuals;
|
---|
78 | int[] dominationCounter;
|
---|
79 | var fronts = new List<List<Tuple<T, double[]>>>();
|
---|
80 | fronts.Add(CalculateBestFront(solutions, qualities, maximization, dominateOnEqualQualities, populationSize, out dominatedIndividuals, out dominationCounter, out rank));
|
---|
81 | var i = 0;
|
---|
82 | while (i < fronts.Count && fronts[i].Count > 0) {
|
---|
83 | var nextFront = new List<Tuple<T, double[]>>();
|
---|
84 | foreach (var p in fronts[i]) {
|
---|
85 | List<int> dominatedIndividualsByp;
|
---|
86 | if (dominatedIndividuals.TryGetValue(p.Item1, out dominatedIndividualsByp)) {
|
---|
87 | for (var k = 0; k < dominatedIndividualsByp.Count; k++) {
|
---|
88 | var dominatedIndividual = dominatedIndividualsByp[k];
|
---|
89 | dominationCounter[dominatedIndividual] -= 1;
|
---|
90 | if (dominationCounter[dominatedIndividual] == 0) {
|
---|
91 | rank[dominatedIndividual] = i + 1;
|
---|
92 | nextFront.Add(Tuple.Create(solutions[dominatedIndividual], qualities[dominatedIndividual]));
|
---|
93 | }
|
---|
94 | }
|
---|
95 | }
|
---|
96 | }
|
---|
97 | i += 1;
|
---|
98 | fronts.Add(nextFront);
|
---|
99 | }
|
---|
100 | return fronts;
|
---|
101 | }
|
---|
102 |
|
---|
103 | private static List<Tuple<T, double[]>> CalculateBestFront<T>(T[] solutions, double[][] qualities, bool[] maximization, bool dominateOnEqualQualities, int populationSize, out Dictionary<T, List<int>> dominatedIndividuals, out int[] dominationCounter, out int[] rank) {
|
---|
104 | var front = new List<Tuple<T, double[]>>();
|
---|
105 | dominatedIndividuals = new Dictionary<T, List<int>>();
|
---|
106 | dominationCounter = new int[populationSize];
|
---|
107 | rank = new int[populationSize];
|
---|
108 | for (var pI = 0; pI < populationSize - 1; pI++) {
|
---|
109 | var p = solutions[pI];
|
---|
110 | List<int> dominatedIndividualsByp;
|
---|
111 | if (!dominatedIndividuals.TryGetValue(p, out dominatedIndividualsByp))
|
---|
112 | dominatedIndividuals[p] = dominatedIndividualsByp = new List<int>();
|
---|
113 | for (var qI = pI + 1; qI < populationSize; qI++) {
|
---|
114 | var test = Dominates(qualities[pI], qualities[qI], maximization, dominateOnEqualQualities);
|
---|
115 | if (test == DominationResult.Dominates) {
|
---|
116 | dominatedIndividualsByp.Add(qI);
|
---|
117 | dominationCounter[qI] += 1;
|
---|
118 | } else if (test == DominationResult.IsDominated) {
|
---|
119 | dominationCounter[pI] += 1;
|
---|
120 | if (!dominatedIndividuals.ContainsKey(solutions[qI]))
|
---|
121 | dominatedIndividuals.Add(solutions[qI], new List<int>());
|
---|
122 | dominatedIndividuals[solutions[qI]].Add(pI);
|
---|
123 | }
|
---|
124 | if (pI == populationSize - 2
|
---|
125 | && qI == populationSize - 1
|
---|
126 | && dominationCounter[qI] == 0) {
|
---|
127 | rank[qI] = 0;
|
---|
128 | front.Add(Tuple.Create(solutions[qI], qualities[qI]));
|
---|
129 | }
|
---|
130 | }
|
---|
131 | if (dominationCounter[pI] == 0) {
|
---|
132 | rank[pI] = 0;
|
---|
133 | front.Add(Tuple.Create(p, qualities[pI]));
|
---|
134 | }
|
---|
135 | }
|
---|
136 | return front;
|
---|
137 | }
|
---|
138 |
|
---|
139 | /// <summary>
|
---|
140 | /// Calculates all pareto fronts by returning the index of the parameters in each front.
|
---|
141 | /// The first in the list is the best front.
|
---|
142 | /// The fast non-dominated sorting algorithm is used as described in
|
---|
143 | /// Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
|
---|
144 | /// A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
|
---|
145 | /// IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
|
---|
146 | /// </summary>
|
---|
147 | /// <remarks>
|
---|
148 | /// When there are plateaus in the fitness landscape several solutions might have exactly
|
---|
149 | /// the same fitness vector. In this case parameter <paramref name="dominateOnEqualQualities"/>
|
---|
150 | /// can be set to true to avoid plateaus becoming too attractive for the search process.
|
---|
151 | /// </remarks>
|
---|
152 | /// <param name="solutions">The solutions of the population.</param>
|
---|
153 | /// <param name="qualities">The qualities resp. fitness for each solution.</param>
|
---|
154 | /// <param name="maximization">The objective in each dimension.</param>
|
---|
155 | /// <param name="dominateOnEqualQualities">Whether solutions of exactly equal quality should dominate one another.</param>
|
---|
156 | /// <returns>A sorted list of the pareto fronts where each front contains the indices of the <paramref name="solutions"/> and <paramref name="qualities"/>.</returns>
|
---|
157 | public static List<List<int>> CalculateAllParetoFrontsIndices<T>(T[] solutions, double[][] qualities, bool[] maximization, bool dominateOnEqualQualities = true) {
|
---|
158 | return CalculateAllParetoFrontsIndices(solutions, qualities, maximization, out var rank, dominateOnEqualQualities);
|
---|
159 | }
|
---|
160 |
|
---|
161 | /// <summary>
|
---|
162 | /// Calculates all pareto fronts by returning the index of the parameters in each front.
|
---|
163 | /// The first in the list is the best front.
|
---|
164 | /// The fast non-dominated sorting algorithm is used as described in
|
---|
165 | /// Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
|
---|
166 | /// A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
|
---|
167 | /// IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
|
---|
168 | /// </summary>
|
---|
169 | /// <remarks>
|
---|
170 | /// When there are plateaus in the fitness landscape several solutions might have exactly
|
---|
171 | /// the same fitness vector. In this case parameter <paramref name="dominateOnEqualQualities"/>
|
---|
172 | /// can be set to true to avoid plateaus becoming too attractive for the search process.
|
---|
173 | /// </remarks>
|
---|
174 | /// <param name="solutions">The solutions of the population.</param>
|
---|
175 | /// <param name="qualities">The qualities resp. fitness for each solution.</param>
|
---|
176 | /// <param name="maximization">The objective in each dimension.</param>
|
---|
177 | /// <param name="rank">The rank of each of the solutions, corresponds to the front it is put in.</param>
|
---|
178 | /// <param name="dominateOnEqualQualities">Whether solutions of exactly equal quality should dominate one another.</param>
|
---|
179 | /// <returns>A sorted list of the pareto fronts where each front contains the indices of the <paramref name="solutions"/> and <paramref name="qualities"/>.</returns>
|
---|
180 | public static List<List<int>> CalculateAllParetoFrontsIndices<T>(T[] solutions, double[][] qualities, bool[] maximization, out int[] rank, bool dominateOnEqualQualities = true) {
|
---|
181 | var populationSize = solutions.Length;
|
---|
182 |
|
---|
183 | var dominatedIndividuals = Enumerable.Range(0, qualities.Length).Select(x => new List<int>()).ToArray();
|
---|
184 | var dominationCounter = new int[populationSize];
|
---|
185 | rank = new int[populationSize];
|
---|
186 | var fronts = new List<List<int>>();
|
---|
187 | fronts.Add(CalculateBestFrontIndices(solutions, qualities, maximization, dominateOnEqualQualities, populationSize, dominatedIndividuals, dominationCounter, rank));
|
---|
188 | var i = 0;
|
---|
189 | while (i < fronts.Count && fronts[i].Count > 0) {
|
---|
190 | var nextFront = new List<int>();
|
---|
191 | foreach (var p in fronts[i]) {
|
---|
192 | if (dominatedIndividuals[p].Count > 0) {
|
---|
193 | for (var k = 0; k < dominatedIndividuals[p].Count; k++) {
|
---|
194 | var dominatedIndividual = dominatedIndividuals[p][k];
|
---|
195 | dominationCounter[dominatedIndividual] -= 1;
|
---|
196 | if (dominationCounter[dominatedIndividual] == 0) {
|
---|
197 | rank[dominatedIndividual] = i + 1;
|
---|
198 | nextFront.Add(dominatedIndividual);
|
---|
199 | }
|
---|
200 | }
|
---|
201 | }
|
---|
202 | }
|
---|
203 | i += 1;
|
---|
204 | fronts.Add(nextFront);
|
---|
205 | }
|
---|
206 | return fronts;
|
---|
207 | }
|
---|
208 |
|
---|
209 | private static List<int> CalculateBestFrontIndices<T>(T[] solutions, double[][] qualities, bool[] maximization, bool dominateOnEqualQualities, int populationSize, List<int>[] dominatedIndividuals, int[] dominationCounter, int[] rank) {
|
---|
210 | var front = new List<int>();
|
---|
211 | for (var pI = 0; pI < populationSize - 1; pI++) {
|
---|
212 | var p = solutions[pI];
|
---|
213 | for (var qI = pI + 1; qI < populationSize; qI++) {
|
---|
214 | var test = Dominates(qualities[pI], qualities[qI], maximization, dominateOnEqualQualities);
|
---|
215 | if (test == DominationResult.Dominates) {
|
---|
216 | dominatedIndividuals[pI].Add(qI);
|
---|
217 | dominationCounter[qI] += 1;
|
---|
218 | } else if (test == DominationResult.IsDominated) {
|
---|
219 | dominationCounter[pI] += 1;
|
---|
220 | dominatedIndividuals[qI].Add(pI);
|
---|
221 | }
|
---|
222 | if (pI == populationSize - 2
|
---|
223 | && qI == populationSize - 1
|
---|
224 | && dominationCounter[qI] == 0) {
|
---|
225 | rank[qI] = 0;
|
---|
226 | front.Add(qI);
|
---|
227 | }
|
---|
228 | }
|
---|
229 | if (dominationCounter[pI] == 0) {
|
---|
230 | rank[pI] = 0;
|
---|
231 | front.Add(pI);
|
---|
232 | }
|
---|
233 | }
|
---|
234 | return front;
|
---|
235 | }
|
---|
236 |
|
---|
237 | /// <summary>
|
---|
238 | /// Calculates the domination result of two solutions which are given in form
|
---|
239 | /// of their quality resp. fitness vector.
|
---|
240 | /// </summary>
|
---|
241 | /// <param name="left">The fitness of the solution that is to be compared.</param>
|
---|
242 | /// <param name="right">The fitness of the solution which is compared against.</param>
|
---|
243 | /// <param name="maximizations">The objective in each dimension.</param>
|
---|
244 | /// <param name="dominateOnEqualQualities">Whether the result should be Dominates in case both fitness vectors are exactly equal</param>
|
---|
245 | /// <returns>Dominates if left dominates right, IsDominated if right dominates left and IsNonDominated otherwise.</returns>
|
---|
246 | public static DominationResult Dominates(double[] left, double[] right, bool[] maximizations, bool dominateOnEqualQualities) {
|
---|
247 | //mkommend Caution: do not use LINQ.SequenceEqual for comparing the two quality arrays (left and right) due to performance reasons
|
---|
248 | if (dominateOnEqualQualities) {
|
---|
249 | var equal = true;
|
---|
250 | for (var i = 0; i < left.Length; i++) {
|
---|
251 | if (left[i] != right[i]) {
|
---|
252 | equal = false;
|
---|
253 | break;
|
---|
254 | }
|
---|
255 | }
|
---|
256 | if (equal) return DominationResult.Dominates;
|
---|
257 | }
|
---|
258 |
|
---|
259 | bool leftIsBetter = false, rightIsBetter = false;
|
---|
260 | for (var i = 0; i < left.Length; i++) {
|
---|
261 | if (IsDominated(left[i], right[i], maximizations[i])) rightIsBetter = true;
|
---|
262 | else if (IsDominated(right[i], left[i], maximizations[i])) leftIsBetter = true;
|
---|
263 | if (leftIsBetter && rightIsBetter) break;
|
---|
264 | }
|
---|
265 |
|
---|
266 | if (leftIsBetter && !rightIsBetter) return DominationResult.Dominates;
|
---|
267 | if (!leftIsBetter && rightIsBetter) return DominationResult.IsDominated;
|
---|
268 | return DominationResult.IsNonDominated;
|
---|
269 | }
|
---|
270 |
|
---|
271 | /// <summary>
|
---|
272 | /// A simple check if the quality resp. fitness in <paramref name="left"/> is better than
|
---|
273 | /// that given in <paramref name="right"/>.
|
---|
274 | /// </summary>
|
---|
275 | /// <param name="left">The first fitness value</param>
|
---|
276 | /// <param name="right">The second fitness value</param>
|
---|
277 | /// <param name="maximization">The objective direction</param>
|
---|
278 | /// <returns>True if left is better than right, false if it is not.</returns>
|
---|
279 | public static bool IsDominated(double left, double right, bool maximization) {
|
---|
280 | return maximization && left < right
|
---|
281 | || !maximization && left > right;
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|