1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Optimization {
|
---|
28 | /// <summary>
|
---|
29 | /// CrowdingCalculator distance d(x,A) is usually defined between a point x and a set of points A
|
---|
30 | /// d(x,A) is the sum over all dimensions where for each dimension the next larger and the next smaller Point to x are subtracted
|
---|
31 | /// see in more detail: "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II" by K Deb, S Agrawal, A Pratap, T Meyarivan
|
---|
32 | /// CrowdingCalculator as a quality of the complete qualities is defined here as the mean of the crowding distances of every point x in A
|
---|
33 | /// C(A) = mean(d(x,A)) where x in A and d(x,A) is not infinite
|
---|
34 | /// Beware that CrowdingCalculator is not normalized for the number of dimensions. A higher number of dimensions normally causes higher CrowdingCalculator values
|
---|
35 | /// </summary>
|
---|
36 | public static class CrowdingCalculator {
|
---|
37 | public static double CalculateCrowding<TP>(IEnumerable<TP> qualities) where TP : IReadOnlyList<double> {
|
---|
38 | return CalculateCrowdingDistances(qualities.ToArray()).Where(d => !double.IsPositiveInfinity(d)).DefaultIfEmpty(double.PositiveInfinity).Average();
|
---|
39 | }
|
---|
40 |
|
---|
41 | public static IList<double> CalculateCrowdingDistances<TP>(TP[] qualities) where TP : IReadOnlyList<double> {
|
---|
42 | if (qualities == null) throw new ArgumentException("qualities must not be null");
|
---|
43 | if (!qualities.Any()) throw new ArgumentException("qualities must not be empty");
|
---|
44 |
|
---|
45 | var lastIndex = qualities.Length - 1;
|
---|
46 | int objectiveCount = qualities[0].Count;
|
---|
47 |
|
---|
48 | var pointsums = qualities.ToDictionary(x => x, x => 0.0);
|
---|
49 | for (var dim = 0; dim < objectiveCount; dim++) {
|
---|
50 | var arr = qualities.OrderBy(x => x[dim]).ToArray();
|
---|
51 |
|
---|
52 | pointsums[arr[0]] = double.PositiveInfinity;
|
---|
53 | pointsums[arr[lastIndex]] = double.PositiveInfinity;
|
---|
54 |
|
---|
55 | var d = arr[lastIndex][dim] - arr[0][dim];
|
---|
56 | if (d.IsAlmost(0.0)) d = 1.0;
|
---|
57 | for (var i = 1; i < lastIndex; i++)
|
---|
58 | pointsums[arr[i]] += (arr[i + 1][dim] - arr[i - 1][dim]) / d;
|
---|
59 | }
|
---|
60 | return qualities.Select(x => pointsums[x]).ToList();
|
---|
61 | }
|
---|
62 | }
|
---|
63 | } |
---|