1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HEAL.Attic;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Optimization {
|
---|
33 | [StorableType("6F2EC371-0309-4848-B7B1-C9B9C7E3436F")]
|
---|
34 | public abstract class MultiObjectiveProblem<TEncoding, TEncodedSolution> :
|
---|
35 | Problem<TEncoding, TEncodedSolution, MultiObjectiveEvaluator<TEncodedSolution>>,
|
---|
36 | IMultiObjectiveProblem<TEncoding, TEncodedSolution>,
|
---|
37 | IMultiObjectiveProblemDefinition<TEncoding, TEncodedSolution>
|
---|
38 | where TEncoding : class, IEncoding<TEncodedSolution>
|
---|
39 | where TEncodedSolution : class, IEncodedSolution {
|
---|
40 | #region Parameternames
|
---|
41 | public const string BestKnownFrontParameterName = "BestKnownFront";
|
---|
42 | public const string ReferencePointParameterName = "ReferencePoint";
|
---|
43 | #endregion
|
---|
44 |
|
---|
45 | #region Parameterproperties
|
---|
46 | [Storable] public IValueParameter<BoolArray> MaximizationParameter { get; }
|
---|
47 | public IValueParameter<DoubleMatrix> BestKnownFrontParameter {
|
---|
48 | get { return (IValueParameter<DoubleMatrix>)Parameters[BestKnownFrontParameterName]; }
|
---|
49 | }
|
---|
50 | public IValueParameter<DoubleArray> ReferencePointParameter {
|
---|
51 | get { return (IValueParameter<DoubleArray>)Parameters[ReferencePointParameterName]; }
|
---|
52 | }
|
---|
53 | #endregion
|
---|
54 |
|
---|
55 |
|
---|
56 | [StorableConstructor]
|
---|
57 | protected MultiObjectiveProblem(StorableConstructorFlag _) : base(_) { }
|
---|
58 |
|
---|
59 | protected MultiObjectiveProblem(MultiObjectiveProblem<TEncoding, TEncodedSolution> original, Cloner cloner)
|
---|
60 | : base(original, cloner) {
|
---|
61 | MaximizationParameter = cloner.Clone(original.MaximizationParameter);
|
---|
62 | ParameterizeOperators();
|
---|
63 | }
|
---|
64 |
|
---|
65 | protected MultiObjectiveProblem() : base() {
|
---|
66 | MaximizationParameter = new ValueParameter<BoolArray>("Maximization", "The dimensions correspond to the different objectives: False if the objective should be minimized, true if it should be maximized..", new BoolArray(new bool[] { }, @readonly: true));
|
---|
67 | Parameters.Add(MaximizationParameter);
|
---|
68 | Parameters.Add(new OptionalValueParameter<DoubleMatrix>(BestKnownFrontParameterName, "A double matrix representing the best known qualites for this problem (aka points on the Pareto front). Points are to be given in a row-wise fashion."));
|
---|
69 | Parameters.Add(new OptionalValueParameter<DoubleArray>(ReferencePointParameterName, "The refrence point for hypervolume calculations on this problem"));
|
---|
70 | Operators.Add(Evaluator);
|
---|
71 | Operators.Add(new MultiObjectiveAnalyzer<TEncodedSolution>());
|
---|
72 | ParameterizeOperators();
|
---|
73 | }
|
---|
74 |
|
---|
75 | protected MultiObjectiveProblem(TEncoding encoding) : base(encoding) {
|
---|
76 | MaximizationParameter = new ValueParameter<BoolArray>("Maximization", "The dimensions correspond to the different objectives: False if the objective should be minimized, true if it should be maximized..", new BoolArray(new bool[] { }, @readonly: true));
|
---|
77 | Parameters.Add(MaximizationParameter);
|
---|
78 | Parameters.Add(new OptionalValueParameter<DoubleMatrix>(BestKnownFrontParameterName, "A double matrix representing the best known qualites for this problem (aka points on the Pareto front). Points are to be given in a row-wise fashion."));
|
---|
79 | Parameters.Add(new OptionalValueParameter<DoubleArray>(ReferencePointParameterName, "The refrence point for hypervolume calculations on this problem"));
|
---|
80 | Operators.Add(Evaluator);
|
---|
81 | Operators.Add(new MultiObjectiveAnalyzer<TEncodedSolution>());
|
---|
82 | ParameterizeOperators();
|
---|
83 | }
|
---|
84 |
|
---|
85 | [StorableHook(HookType.AfterDeserialization)]
|
---|
86 | private void AfterDeserialization() {
|
---|
87 | ParameterizeOperators();
|
---|
88 | }
|
---|
89 |
|
---|
90 | public int Objectives {
|
---|
91 | get { return Maximization.Length; }
|
---|
92 | }
|
---|
93 | public bool[] Maximization {
|
---|
94 | get { return MaximizationParameter.Value.CloneAsArray(); }
|
---|
95 | protected set {
|
---|
96 | if (MaximizationParameter.Value.SequenceEqual(value)) return;
|
---|
97 | MaximizationParameter.ForceValue(new BoolArray(value, @readonly: true));
|
---|
98 | OnMaximizationChanged();
|
---|
99 | }
|
---|
100 | }
|
---|
101 |
|
---|
102 | public virtual IReadOnlyList<double[]> BestKnownFront {
|
---|
103 | get {
|
---|
104 | if (!Parameters.ContainsKey(BestKnownFrontParameterName)) return null;
|
---|
105 | var mat = BestKnownFrontParameter.Value;
|
---|
106 | if (mat == null) return null;
|
---|
107 | var v = new double[mat.Rows][];
|
---|
108 | for (var i = 0; i < mat.Rows; i++) {
|
---|
109 | var r = v[i] = new double[mat.Columns];
|
---|
110 | for (var j = 0; j < mat.Columns; j++) {
|
---|
111 | r[j] = mat[i, j];
|
---|
112 | }
|
---|
113 | }
|
---|
114 | return v;
|
---|
115 | }
|
---|
116 | set {
|
---|
117 | if (value == null || value.Count == 0) {
|
---|
118 | BestKnownFrontParameter.Value = new DoubleMatrix();
|
---|
119 | return;
|
---|
120 | }
|
---|
121 | var mat = new DoubleMatrix(value.Count, value[0].Length);
|
---|
122 | for (int i = 0; i < value.Count; i++) {
|
---|
123 | for (int j = 0; j < value[i].Length; j++) {
|
---|
124 | mat[i, j] = value[i][j];
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | BestKnownFrontParameter.Value = mat;
|
---|
129 | }
|
---|
130 | }
|
---|
131 | public virtual double[] ReferencePoint {
|
---|
132 | get { return ReferencePointParameter.Value != null ? ReferencePointParameter.Value.CloneAsArray() : null; }
|
---|
133 | set { ReferencePointParameter.Value = new DoubleArray(value); }
|
---|
134 | }
|
---|
135 |
|
---|
136 | public virtual double[] Evaluate(TEncodedSolution solution, IRandom random) {
|
---|
137 | return Evaluate(solution, random, CancellationToken.None);
|
---|
138 | }
|
---|
139 |
|
---|
140 | public abstract double[] Evaluate(TEncodedSolution solution, IRandom random, CancellationToken cancellationToken);
|
---|
141 | public virtual void Analyze(TEncodedSolution[] solutions, double[][] qualities, ResultCollection results, IRandom random) { }
|
---|
142 |
|
---|
143 |
|
---|
144 | protected override void OnOperatorsChanged() {
|
---|
145 | if (Encoding != null) {
|
---|
146 | PruneSingleObjectiveOperators(Encoding);
|
---|
147 | var combinedEncoding = Encoding as CombinedEncoding;
|
---|
148 | if (combinedEncoding != null) {
|
---|
149 | foreach (var encoding in combinedEncoding.Encodings.ToList()) {
|
---|
150 | PruneSingleObjectiveOperators(encoding);
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|
154 | base.OnOperatorsChanged();
|
---|
155 | }
|
---|
156 |
|
---|
157 | private void PruneSingleObjectiveOperators(IEncoding encoding) {
|
---|
158 | if (encoding != null && encoding.Operators.Any(x => x is ISingleObjectiveOperator && !(x is IMultiObjectiveOperator)))
|
---|
159 | encoding.Operators = encoding.Operators.Where(x => !(x is ISingleObjectiveOperator) || x is IMultiObjectiveOperator).ToList();
|
---|
160 |
|
---|
161 | foreach (var multiOp in Encoding.Operators.OfType<IMultiOperator>()) {
|
---|
162 | foreach (var soOp in multiOp.Operators.Where(x => x is ISingleObjectiveOperator).ToList()) {
|
---|
163 | multiOp.RemoveOperator(soOp);
|
---|
164 | }
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | protected override void OnEvaluatorChanged() {
|
---|
169 | base.OnEvaluatorChanged();
|
---|
170 | ParameterizeOperators();
|
---|
171 | }
|
---|
172 |
|
---|
173 | private void ParameterizeOperators() {
|
---|
174 | foreach (var op in Operators.OfType<IMultiObjectiveEvaluationOperator<TEncodedSolution>>())
|
---|
175 | op.EvaluateFunc = Evaluate;
|
---|
176 | foreach (var op in Operators.OfType<IMultiObjectiveAnalysisOperator<TEncodedSolution>>())
|
---|
177 | op.AnalyzeAction = Analyze;
|
---|
178 | }
|
---|
179 |
|
---|
180 |
|
---|
181 | #region IMultiObjectiveHeuristicOptimizationProblem Members
|
---|
182 | IParameter IMultiObjectiveHeuristicOptimizationProblem.MaximizationParameter {
|
---|
183 | get { return MaximizationParameter; }
|
---|
184 | }
|
---|
185 | IMultiObjectiveEvaluator IMultiObjectiveHeuristicOptimizationProblem.Evaluator {
|
---|
186 | get { return Evaluator; }
|
---|
187 | }
|
---|
188 | #endregion
|
---|
189 |
|
---|
190 | public event EventHandler MaximizationChanged;
|
---|
191 | protected void OnMaximizationChanged() {
|
---|
192 | MaximizationChanged?.Invoke(this, EventArgs.Empty);
|
---|
193 | }
|
---|
194 | }
|
---|
195 | } |
---|