[9950] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16723] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9950] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Analysis.Statistics {
|
---|
| 27 | public static class BonferroniHolm {
|
---|
[10017] | 28 | /// <summary>
|
---|
| 29 | /// Based on David Groppe's MATLAB implementation
|
---|
[11673] | 30 | /// (BSD licensed, see
|
---|
[10017] | 31 | /// http://www.mathworks.com/matlabcentral/fileexchange/28303-bonferroni-holm-correction-for-multiple-comparisons)
|
---|
| 32 | /// </summary>
|
---|
[9950] | 33 | public static double[] Calculate(double globalAlpha, double[] pValues, out bool[] h) {
|
---|
| 34 | int k = pValues.Length;
|
---|
| 35 | double[] alphaNiveau = new double[k];
|
---|
| 36 | double[] adjustedPValues = new double[k];
|
---|
| 37 | bool[] decision = new bool[k];
|
---|
| 38 | Dictionary<int, double> pValuesIndizes = new Dictionary<int, double>();
|
---|
| 39 |
|
---|
| 40 | for (int i = 0; i < k; i++) {
|
---|
| 41 | pValuesIndizes.Add(i, pValues[i]);
|
---|
| 42 | }
|
---|
[11914] | 43 | var sortedPValues = pValuesIndizes.OrderBy(x => x.Value).ToArray();
|
---|
[9950] | 44 |
|
---|
| 45 | for (int i = 1; i < k + 1; i++) {
|
---|
| 46 | alphaNiveau[i - 1] = globalAlpha / (k - i + 1);
|
---|
[11914] | 47 | int idx = sortedPValues[i - 1].Key;
|
---|
[9950] | 48 |
|
---|
| 49 | if (i == 1) {
|
---|
| 50 | //true means reject
|
---|
[11914] | 51 | decision[idx] = sortedPValues[i - 1].Value < alphaNiveau[i - 1];
|
---|
| 52 | adjustedPValues[idx] = sortedPValues[i - 1].Value * (k - i + 1);
|
---|
[9950] | 53 | } else {
|
---|
[11914] | 54 | decision[idx] = decision[sortedPValues[i - 2].Key] && (sortedPValues[i - 1].Value < alphaNiveau[i - 1]);
|
---|
| 55 | adjustedPValues[idx] = Math.Max(adjustedPValues[sortedPValues[i - 2].Key], sortedPValues[i - 1].Value * (k - i + 1));
|
---|
[9950] | 56 | }
|
---|
[11673] | 57 | if (adjustedPValues[idx] > 1.0) {
|
---|
| 58 | adjustedPValues[idx] = 1.0;
|
---|
| 59 | }
|
---|
[9950] | 60 | }
|
---|
| 61 |
|
---|
| 62 | h = decision;
|
---|
| 63 | return adjustedPValues;
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
| 66 | }
|
---|