1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Random;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
|
---|
30 | // This code is based off the publication
|
---|
31 | // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
|
---|
32 | // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
|
---|
33 | public static class LinkageCrossover {
|
---|
34 | // In the GECCO paper, Figure 3
|
---|
35 | public static double ImproveUsingTree(LinkageTree tree, IList<BinaryVector> donors, BinaryVector solution, double fitness, ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector> problem, IRandom rand) {
|
---|
36 | var options = Enumerable.Range(0, donors.Count).ToArray();
|
---|
37 | foreach (var cluster in tree.Clusters) {
|
---|
38 | // Find a donor which has at least one gene value different
|
---|
39 | // from the current solution for this cluster of genes
|
---|
40 | bool donorFound = false;
|
---|
41 | foreach (var donorIndex in options.ShuffleList(rand)) {
|
---|
42 | // Attempt the donation
|
---|
43 | fitness = Donate(solution, fitness, donors[donorIndex], cluster, problem, rand, out donorFound);
|
---|
44 | if (donorFound) break;
|
---|
45 | }
|
---|
46 | }
|
---|
47 | return fitness;
|
---|
48 | }
|
---|
49 |
|
---|
50 | private static double Donate(BinaryVector solution, double fitness, BinaryVector source, IEnumerable<int> cluster, ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector> problem, IRandom rand, out bool changed) {
|
---|
51 | // keep track of which bits flipped to make the donation
|
---|
52 | List<int> flipped = new List<int>();
|
---|
53 | foreach (var index in cluster) {
|
---|
54 | if (solution[index] != source[index]) {
|
---|
55 | flipped.Add(index);
|
---|
56 | solution[index] = !solution[index];
|
---|
57 | }
|
---|
58 | }
|
---|
59 | changed = flipped.Count > 0;
|
---|
60 | if (changed) {
|
---|
61 | double newFitness = problem.Evaluate(solution, rand);
|
---|
62 | // if the original is strictly better, revert the change
|
---|
63 | if (problem.IsBetter(fitness, newFitness)) {
|
---|
64 | foreach (var index in flipped) {
|
---|
65 | solution[index] = !solution[index];
|
---|
66 | }
|
---|
67 | } else {
|
---|
68 | // new solution is no worse than original, keep change to solution
|
---|
69 | fitness = newFitness;
|
---|
70 | }
|
---|
71 | }
|
---|
72 | return fitness;
|
---|
73 | }
|
---|
74 | }
|
---|
75 | }
|
---|