Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2521_ProblemRefactoring/HeuristicLab.Algorithms.ParameterlessPopulationPyramid/3.3/HillClimber.cs

Last change on this file was 17747, checked in by abeham, 4 years ago

#2521: worked on refactoring

  • add results to problem base classes
  • fix external evaluation problem
  • Add result descriptions
File size: 6.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 * and the BEACON Center for the Study of Evolution in Action.
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21#endregion
22
23using System;
24using System.Collections.Generic;
25using System.Linq;
26using System.Threading;
27using HEAL.Attic;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Data;
31using HeuristicLab.Encodings.BinaryVectorEncoding;
32using HeuristicLab.Optimization;
33
34using HeuristicLab.Parameters;
35using HeuristicLab.Random;
36
37
38namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
39  // This code is based off the publication
40  // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
41  // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
42  [Item("Hill Climber (HC)", "Binary Hill Climber.")]
43  [StorableType("BA349010-6295-406E-8989-B271FB96ED86")]
44  [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 150)]
45  public class HillClimber : BasicAlgorithm {
46    [Storable]
47    private readonly IRandom random;
48
49    [Storable] public IFixedValueParameter<IntValue> MaximumIterationsParameter { get; private set; }
50
51    [Storable] public IResult<DoubleValue> BestQualityResult { get; private set; }
52    [Storable] public IResult<IntValue> IterationsResult { get; private set; }
53
54    public override Type ProblemType {
55      get { return typeof(ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector>); }
56    }
57    public new ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector> Problem {
58      get { return (ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector>)base.Problem; }
59      set { base.Problem = (IProblem)value; }
60    }
61
62    public override bool SupportsPause { get { return false; } }
63
64    public int MaximumIterations {
65      get { return MaximumIterationsParameter.Value.Value; }
66      set { MaximumIterationsParameter.Value.Value = value; }
67    }
68
69    private int Iterations {
70      get => IterationsResult.Value.Value;
71      set => IterationsResult.Value.Value = value;
72    }
73
74    private double BestQuality {
75      get => BestQualityResult.Value.Value;
76      set => BestQualityResult.Value.Value = value;
77    }
78
79    [StorableConstructor]
80    protected HillClimber(StorableConstructorFlag _) : base(_) { }
81    protected HillClimber(HillClimber original, Cloner cloner)
82      : base(original, cloner) {
83      MaximumIterationsParameter = cloner.Clone(original.MaximumIterationsParameter);
84      BestQualityResult = cloner.Clone(original.BestQualityResult);
85      IterationsResult = cloner.Clone(original.IterationsResult);
86    }
87    public override IDeepCloneable Clone(Cloner cloner) {
88      return new HillClimber(this, cloner);
89    }
90
91    public HillClimber()
92      : base() {
93      random = new MersenneTwister();
94      Parameters.Add(MaximumIterationsParameter = new FixedValueParameter<IntValue>("Maximum Iterations", "", new IntValue(100)));
95
96      Results.Add(BestQualityResult = new Result<DoubleValue>("Best Quality", "The best quality found so far."));
97      Results.Add(IterationsResult = new Result<IntValue>("Iterations", "The current iteration."));
98    }
99
100    protected override void Initialize(CancellationToken cancellationToken) {
101      base.Initialize(cancellationToken);
102
103      IterationsResult.Value = new IntValue();
104      BestQualityResult.Value = new DoubleValue(double.NaN);
105    }
106
107
108
109    protected override void Run(CancellationToken cancellationToken) {
110      while (IterationsResult.Value.Value < MaximumIterations) {
111        cancellationToken.ThrowIfCancellationRequested();
112
113        var solution = new BinaryVector(Problem.Encoding.Length);
114        for (int i = 0; i < solution.Length; i++) {
115          solution[i] = random.Next(2) == 1;
116        }
117
118        var evaluationResult = Problem.Evaluate(solution, random);
119        var fitness = evaluationResult.Quality;
120
121        fitness = ImproveToLocalOptimum(Problem, solution, fitness, random);
122        var bestSoFar = BestQuality;
123        if (double.IsNaN(bestSoFar) || Problem.IsBetter(fitness, bestSoFar)) {
124          BestQuality = fitness;
125        }
126
127        var context = new SingleObjectiveSolutionContext<BinaryVector>(solution);
128        context.EvaluationResult = new SingleObjectiveEvaluationResult(fitness);
129        Problem.Analyze(new[] { context }, random);
130
131        Iterations++;
132      }
133    }
134    // In the GECCO paper, Section 2.1
135    public static double ImproveToLocalOptimum(ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector> problem, BinaryVector solution, double fitness, IRandom rand) {
136      var tried = new HashSet<int>();
137      do {
138        var options = Enumerable.Range(0, solution.Length).Shuffle(rand);
139        foreach (var option in options) {
140          if (tried.Contains(option)) continue;
141          solution[option] = !solution[option];
142          var newEvaluationResult = problem.Evaluate(solution, rand);
143          double newFitness = newEvaluationResult.Quality;
144          if (problem.IsBetter(newFitness, fitness)) {
145            fitness = newFitness;
146            tried.Clear();
147          } else {
148            solution[option] = !solution[option];
149          }
150          tried.Add(option);
151        }
152      } while (tried.Count != solution.Length);
153      return fitness;
154    }
155  }
156}
Note: See TracBrowser for help on using the repository browser.