[15045] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17226] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15045] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
| 23 | using System;
|
---|
| 24 | using System.Collections.Generic;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using System.Threading;
|
---|
[16807] | 27 | using HEAL.Attic;
|
---|
[15045] | 28 | using HeuristicLab.Analysis;
|
---|
| 29 | using HeuristicLab.Common;
|
---|
| 30 | using HeuristicLab.Core;
|
---|
| 31 | using HeuristicLab.Data;
|
---|
| 32 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 33 | using HeuristicLab.Optimization;
|
---|
| 34 | using HeuristicLab.Parameters;
|
---|
| 35 | using HeuristicLab.Random;
|
---|
| 36 |
|
---|
| 37 | namespace HeuristicLab.Algorithms.MOCMAEvolutionStrategy {
|
---|
[15226] | 38 | [Item("Multi-Objective CMA Evolution Strategy (MOCMAES)", "A multi objective evolution strategy based on covariance matrix adaptation. Code is based on 'Covariance Matrix Adaptation for Multi - objective Optimization' by Igel, Hansen and Roth")]
|
---|
[15045] | 39 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 210)]
|
---|
[16723] | 40 | [StorableType("C10264E3-E4C6-4735-8E94-0DC116E8908D")]
|
---|
[15045] | 41 | public class MOCMAEvolutionStrategy : BasicAlgorithm {
|
---|
[15176] | 42 | public override Type ProblemType {
|
---|
[16807] | 43 | get { return typeof(MultiObjectiveProblem<RealVectorEncoding, RealVector>); }
|
---|
[15045] | 44 | }
|
---|
[16807] | 45 | public new MultiObjectiveProblem<RealVectorEncoding, RealVector> Problem {
|
---|
| 46 | get { return (MultiObjectiveProblem<RealVectorEncoding, RealVector>)base.Problem; }
|
---|
[15045] | 47 | set { base.Problem = value; }
|
---|
| 48 | }
|
---|
[15176] | 49 | public override bool SupportsPause {
|
---|
[15045] | 50 | get { return true; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
[17225] | 53 | public RealVectorEncoding Encoding {
|
---|
| 54 | get { return Problem.Encoding; }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
[15176] | 57 | #region Storable fields
|
---|
[15045] | 58 | [Storable]
|
---|
| 59 | private IRandom random = new MersenneTwister();
|
---|
| 60 | [Storable]
|
---|
| 61 | private NormalDistributedRandom gauss;
|
---|
| 62 | [Storable]
|
---|
| 63 | private Individual[] solutions;
|
---|
| 64 | [Storable]
|
---|
| 65 | private double stepSizeLearningRate; //=cp learning rate in [0,1]
|
---|
| 66 | [Storable]
|
---|
| 67 | private double stepSizeDampeningFactor; //d
|
---|
| 68 | [Storable]
|
---|
[17225] | 69 | private double targetSuccessProbability; // p^target_succ
|
---|
[15045] | 70 | [Storable]
|
---|
[17225] | 71 | private double evolutionPathLearningRate; //cc
|
---|
[15045] | 72 | [Storable]
|
---|
[17225] | 73 | private double covarianceMatrixLearningRate; //ccov
|
---|
[15045] | 74 | [Storable]
|
---|
| 75 | private double covarianceMatrixUnlearningRate;
|
---|
| 76 | [Storable]
|
---|
| 77 | private double successThreshold; //ptresh
|
---|
| 78 | #endregion
|
---|
| 79 |
|
---|
| 80 | #region ParameterNames
|
---|
| 81 | private const string MaximumRuntimeName = "Maximum Runtime";
|
---|
| 82 | private const string SeedName = "Seed";
|
---|
| 83 | private const string SetSeedRandomlyName = "SetSeedRandomly";
|
---|
| 84 | private const string PopulationSizeName = "PopulationSize";
|
---|
| 85 | private const string MaximumGenerationsName = "MaximumGenerations";
|
---|
| 86 | private const string MaximumEvaluatedSolutionsName = "MaximumEvaluatedSolutions";
|
---|
| 87 | private const string InitialSigmaName = "InitialSigma";
|
---|
| 88 | private const string IndicatorName = "Indicator";
|
---|
| 89 |
|
---|
| 90 | private const string EvaluationsResultName = "Evaluations";
|
---|
| 91 | private const string IterationsResultName = "Generations";
|
---|
| 92 | private const string TimetableResultName = "Timetable";
|
---|
| 93 | private const string HypervolumeResultName = "Hypervolume";
|
---|
| 94 | private const string GenerationalDistanceResultName = "Generational Distance";
|
---|
| 95 | private const string InvertedGenerationalDistanceResultName = "Inverted Generational Distance";
|
---|
| 96 | private const string CrowdingResultName = "Crowding";
|
---|
| 97 | private const string SpacingResultName = "Spacing";
|
---|
| 98 | private const string CurrentFrontResultName = "Pareto Front";
|
---|
| 99 | private const string BestHypervolumeResultName = "Best Hypervolume";
|
---|
| 100 | private const string BestKnownHypervolumeResultName = "Best known hypervolume";
|
---|
| 101 | private const string DifferenceToBestKnownHypervolumeResultName = "Absolute Distance to BestKnownHypervolume";
|
---|
| 102 | private const string ScatterPlotResultName = "ScatterPlot";
|
---|
| 103 | #endregion
|
---|
| 104 |
|
---|
| 105 | #region ParameterProperties
|
---|
[15176] | 106 | public IFixedValueParameter<IntValue> MaximumRuntimeParameter {
|
---|
[15045] | 107 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumRuntimeName]; }
|
---|
| 108 | }
|
---|
[15176] | 109 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
[15045] | 110 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedName]; }
|
---|
| 111 | }
|
---|
[15176] | 112 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
[15045] | 113 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyName]; }
|
---|
| 114 | }
|
---|
[15176] | 115 | public IFixedValueParameter<IntValue> PopulationSizeParameter {
|
---|
[15045] | 116 | get { return (IFixedValueParameter<IntValue>)Parameters[PopulationSizeName]; }
|
---|
| 117 | }
|
---|
[15176] | 118 | public IFixedValueParameter<IntValue> MaximumGenerationsParameter {
|
---|
[15045] | 119 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumGenerationsName]; }
|
---|
| 120 | }
|
---|
[15176] | 121 | public IFixedValueParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
[15045] | 122 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluatedSolutionsName]; }
|
---|
| 123 | }
|
---|
[15176] | 124 | public IValueParameter<DoubleArray> InitialSigmaParameter {
|
---|
[15045] | 125 | get { return (IValueParameter<DoubleArray>)Parameters[InitialSigmaName]; }
|
---|
| 126 | }
|
---|
[15176] | 127 | public IConstrainedValueParameter<IIndicator> IndicatorParameter {
|
---|
[15045] | 128 | get { return (IConstrainedValueParameter<IIndicator>)Parameters[IndicatorName]; }
|
---|
| 129 | }
|
---|
| 130 | #endregion
|
---|
| 131 |
|
---|
| 132 | #region Properties
|
---|
[15176] | 133 | public int MaximumRuntime {
|
---|
[15045] | 134 | get { return MaximumRuntimeParameter.Value.Value; }
|
---|
| 135 | set { MaximumRuntimeParameter.Value.Value = value; }
|
---|
| 136 | }
|
---|
[15176] | 137 | public int Seed {
|
---|
[15045] | 138 | get { return SeedParameter.Value.Value; }
|
---|
| 139 | set { SeedParameter.Value.Value = value; }
|
---|
| 140 | }
|
---|
[15176] | 141 | public bool SetSeedRandomly {
|
---|
[15045] | 142 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 143 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 144 | }
|
---|
[15176] | 145 | public int PopulationSize {
|
---|
[15045] | 146 | get { return PopulationSizeParameter.Value.Value; }
|
---|
| 147 | set { PopulationSizeParameter.Value.Value = value; }
|
---|
| 148 | }
|
---|
[15176] | 149 | public int MaximumGenerations {
|
---|
[15045] | 150 | get { return MaximumGenerationsParameter.Value.Value; }
|
---|
| 151 | set { MaximumGenerationsParameter.Value.Value = value; }
|
---|
| 152 | }
|
---|
[15176] | 153 | public int MaximumEvaluatedSolutions {
|
---|
[15045] | 154 | get { return MaximumEvaluatedSolutionsParameter.Value.Value; }
|
---|
| 155 | set { MaximumEvaluatedSolutionsParameter.Value.Value = value; }
|
---|
| 156 | }
|
---|
[15176] | 157 | public DoubleArray InitialSigma {
|
---|
[15045] | 158 | get { return InitialSigmaParameter.Value; }
|
---|
| 159 | set { InitialSigmaParameter.Value = value; }
|
---|
| 160 | }
|
---|
[15176] | 161 | public IIndicator Indicator {
|
---|
[15045] | 162 | get { return IndicatorParameter.Value; }
|
---|
| 163 | set { IndicatorParameter.Value = value; }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
[17225] | 166 | public double StepSizeLearningRate {
|
---|
| 167 | get { return stepSizeLearningRate; }
|
---|
| 168 | }
|
---|
| 169 | public double StepSizeDampeningFactor {
|
---|
| 170 | get { return stepSizeDampeningFactor; }
|
---|
| 171 | }
|
---|
| 172 | public double TargetSuccessProbability {
|
---|
| 173 | get { return targetSuccessProbability; }
|
---|
| 174 | }
|
---|
| 175 | public double EvolutionPathLearningRate {
|
---|
| 176 | get { return evolutionPathLearningRate; }
|
---|
| 177 | }
|
---|
| 178 | public double CovarianceMatrixLearningRate {
|
---|
| 179 | get { return covarianceMatrixLearningRate; }
|
---|
| 180 | }
|
---|
| 181 | public double CovarianceMatrixUnlearningRate {
|
---|
| 182 | get { return covarianceMatrixUnlearningRate; }
|
---|
| 183 | }
|
---|
| 184 | public double SuccessThreshold {
|
---|
| 185 | get { return successThreshold; }
|
---|
| 186 | }
|
---|
[15045] | 187 | #endregion
|
---|
| 188 |
|
---|
| 189 | #region ResultsProperties
|
---|
[15176] | 190 | private int ResultsEvaluations {
|
---|
[15045] | 191 | get { return ((IntValue)Results[EvaluationsResultName].Value).Value; }
|
---|
| 192 | set { ((IntValue)Results[EvaluationsResultName].Value).Value = value; }
|
---|
| 193 | }
|
---|
[15176] | 194 | private int ResultsIterations {
|
---|
[15045] | 195 | get { return ((IntValue)Results[IterationsResultName].Value).Value; }
|
---|
| 196 | set { ((IntValue)Results[IterationsResultName].Value).Value = value; }
|
---|
| 197 | }
|
---|
| 198 | #region Datatable
|
---|
[15176] | 199 | private DataTable ResultsQualities {
|
---|
[15045] | 200 | get { return (DataTable)Results[TimetableResultName].Value; }
|
---|
| 201 | }
|
---|
[15176] | 202 | private DataRow ResultsBestHypervolumeDataLine {
|
---|
[15045] | 203 | get { return ResultsQualities.Rows[BestHypervolumeResultName]; }
|
---|
| 204 | }
|
---|
[15176] | 205 | private DataRow ResultsHypervolumeDataLine {
|
---|
[15045] | 206 | get { return ResultsQualities.Rows[HypervolumeResultName]; }
|
---|
| 207 | }
|
---|
[15176] | 208 | private DataRow ResultsGenerationalDistanceDataLine {
|
---|
[15045] | 209 | get { return ResultsQualities.Rows[GenerationalDistanceResultName]; }
|
---|
| 210 | }
|
---|
[15176] | 211 | private DataRow ResultsInvertedGenerationalDistanceDataLine {
|
---|
[15045] | 212 | get { return ResultsQualities.Rows[InvertedGenerationalDistanceResultName]; }
|
---|
| 213 | }
|
---|
[15176] | 214 | private DataRow ResultsCrowdingDataLine {
|
---|
[15045] | 215 | get { return ResultsQualities.Rows[CrowdingResultName]; }
|
---|
| 216 | }
|
---|
[15176] | 217 | private DataRow ResultsSpacingDataLine {
|
---|
[15045] | 218 | get { return ResultsQualities.Rows[SpacingResultName]; }
|
---|
| 219 | }
|
---|
[15176] | 220 | private DataRow ResultsHypervolumeDifferenceDataLine {
|
---|
[15045] | 221 | get { return ResultsQualities.Rows[DifferenceToBestKnownHypervolumeResultName]; }
|
---|
| 222 | }
|
---|
| 223 | #endregion
|
---|
| 224 | //QualityIndicators
|
---|
[15176] | 225 | private double ResultsHypervolume {
|
---|
[15045] | 226 | get { return ((DoubleValue)Results[HypervolumeResultName].Value).Value; }
|
---|
| 227 | set { ((DoubleValue)Results[HypervolumeResultName].Value).Value = value; }
|
---|
| 228 | }
|
---|
[15176] | 229 | private double ResultsGenerationalDistance {
|
---|
[15045] | 230 | get { return ((DoubleValue)Results[GenerationalDistanceResultName].Value).Value; }
|
---|
| 231 | set { ((DoubleValue)Results[GenerationalDistanceResultName].Value).Value = value; }
|
---|
| 232 | }
|
---|
[15176] | 233 | private double ResultsInvertedGenerationalDistance {
|
---|
[15045] | 234 | get { return ((DoubleValue)Results[InvertedGenerationalDistanceResultName].Value).Value; }
|
---|
| 235 | set { ((DoubleValue)Results[InvertedGenerationalDistanceResultName].Value).Value = value; }
|
---|
| 236 | }
|
---|
[15176] | 237 | private double ResultsCrowding {
|
---|
[15045] | 238 | get { return ((DoubleValue)Results[CrowdingResultName].Value).Value; }
|
---|
| 239 | set { ((DoubleValue)Results[CrowdingResultName].Value).Value = value; }
|
---|
| 240 | }
|
---|
[15176] | 241 | private double ResultsSpacing {
|
---|
[15045] | 242 | get { return ((DoubleValue)Results[SpacingResultName].Value).Value; }
|
---|
| 243 | set { ((DoubleValue)Results[SpacingResultName].Value).Value = value; }
|
---|
| 244 | }
|
---|
[15176] | 245 | private double ResultsBestHypervolume {
|
---|
[15045] | 246 | get { return ((DoubleValue)Results[BestHypervolumeResultName].Value).Value; }
|
---|
| 247 | set { ((DoubleValue)Results[BestHypervolumeResultName].Value).Value = value; }
|
---|
| 248 | }
|
---|
[15176] | 249 | private double ResultsBestKnownHypervolume {
|
---|
[15045] | 250 | get { return ((DoubleValue)Results[BestKnownHypervolumeResultName].Value).Value; }
|
---|
| 251 | set { ((DoubleValue)Results[BestKnownHypervolumeResultName].Value).Value = value; }
|
---|
| 252 | }
|
---|
[15176] | 253 | private double ResultsDifferenceBestKnownHypervolume {
|
---|
[15045] | 254 | get { return ((DoubleValue)Results[DifferenceToBestKnownHypervolumeResultName].Value).Value; }
|
---|
| 255 | set { ((DoubleValue)Results[DifferenceToBestKnownHypervolumeResultName].Value).Value = value; }
|
---|
| 256 | }
|
---|
| 257 | //Solutions
|
---|
[15176] | 258 | private DoubleMatrix ResultsSolutions {
|
---|
[15045] | 259 | get { return (DoubleMatrix)Results[CurrentFrontResultName].Value; }
|
---|
| 260 | set { Results[CurrentFrontResultName].Value = value; }
|
---|
| 261 | }
|
---|
[15203] | 262 | private ParetoFrontScatterPlot ResultsScatterPlot {
|
---|
| 263 | get { return (ParetoFrontScatterPlot)Results[ScatterPlotResultName].Value; }
|
---|
[15045] | 264 | set { Results[ScatterPlotResultName].Value = value; }
|
---|
| 265 | }
|
---|
| 266 | #endregion
|
---|
| 267 |
|
---|
| 268 | #region Constructors
|
---|
| 269 | public MOCMAEvolutionStrategy() {
|
---|
| 270 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumRuntimeName, "The maximum runtime in seconds after which the algorithm stops. Use -1 to specify no limit for the runtime", new IntValue(3600)));
|
---|
| 271 | Parameters.Add(new FixedValueParameter<IntValue>(SeedName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 272 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
| 273 | Parameters.Add(new FixedValueParameter<IntValue>(PopulationSizeName, "λ (lambda) - the size of the offspring population.", new IntValue(20)));
|
---|
[17225] | 274 | Parameters.Add(new ValueParameter<DoubleArray>(InitialSigmaName, "The initial sigma can be a single value or a value for each dimension. All values need to be > 0.", new DoubleArray(new[] {0.5})));
|
---|
[15045] | 275 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumGenerationsName, "The maximum number of generations which should be processed.", new IntValue(1000)));
|
---|
| 276 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluatedSolutionsName, "The maximum number of evaluated solutions that should be computed.", new IntValue(int.MaxValue)));
|
---|
[17225] | 277 | var set = new ItemSet<IIndicator> {new HypervolumeIndicator(), new CrowdingIndicator(), new MinimalDistanceIndicator()};
|
---|
[15045] | 278 | Parameters.Add(new ConstrainedValueParameter<IIndicator>(IndicatorName, "The selection mechanism on non-dominated solutions", set, set.First()));
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | [StorableConstructor]
|
---|
[16723] | 282 | protected MOCMAEvolutionStrategy(StorableConstructorFlag _) : base(_) { }
|
---|
[15045] | 283 |
|
---|
| 284 | protected MOCMAEvolutionStrategy(MOCMAEvolutionStrategy original, Cloner cloner) : base(original, cloner) {
|
---|
| 285 | random = cloner.Clone(original.random);
|
---|
| 286 | gauss = cloner.Clone(original.gauss);
|
---|
[15089] | 287 | solutions = original.solutions != null ? original.solutions.Select(cloner.Clone).ToArray() : null;
|
---|
[15045] | 288 | stepSizeLearningRate = original.stepSizeLearningRate;
|
---|
| 289 | stepSizeDampeningFactor = original.stepSizeDampeningFactor;
|
---|
| 290 | targetSuccessProbability = original.targetSuccessProbability;
|
---|
| 291 | evolutionPathLearningRate = original.evolutionPathLearningRate;
|
---|
| 292 | covarianceMatrixLearningRate = original.covarianceMatrixLearningRate;
|
---|
| 293 | covarianceMatrixUnlearningRate = original.covarianceMatrixUnlearningRate;
|
---|
| 294 | successThreshold = original.successThreshold;
|
---|
| 295 | }
|
---|
| 296 |
|
---|
[17225] | 297 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 298 | return new MOCMAEvolutionStrategy(this, cloner);
|
---|
| 299 | }
|
---|
[15045] | 300 | #endregion
|
---|
| 301 |
|
---|
| 302 | #region Initialization
|
---|
| 303 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
[16723] | 304 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
[15045] | 305 | random.Reset(Seed);
|
---|
| 306 | gauss = new NormalDistributedRandom(random, 0, 1);
|
---|
| 307 |
|
---|
| 308 | InitResults();
|
---|
| 309 | InitStrategy();
|
---|
| 310 | InitSolutions();
|
---|
| 311 | Analyze();
|
---|
| 312 |
|
---|
| 313 | ResultsIterations = 1;
|
---|
| 314 | }
|
---|
| 315 | private Individual InitializeIndividual(RealVector x) {
|
---|
| 316 | var zeros = new RealVector(x.Length);
|
---|
| 317 | var c = new double[x.Length, x.Length];
|
---|
| 318 | var sigma = InitialSigma.Max();
|
---|
| 319 | for (var i = 0; i < x.Length; i++) {
|
---|
| 320 | var d = InitialSigma[i % InitialSigma.Length] / sigma;
|
---|
| 321 | c[i, i] = d * d;
|
---|
| 322 | }
|
---|
| 323 | return new Individual(x, targetSuccessProbability, sigma, zeros, c, this);
|
---|
| 324 | }
|
---|
| 325 | private void InitSolutions() {
|
---|
| 326 | solutions = new Individual[PopulationSize];
|
---|
| 327 | for (var i = 0; i < PopulationSize; i++) {
|
---|
[17261] | 328 | var x = new RealVector(Encoding.Length); // Uniform distribution in all dimensions assumed.
|
---|
[17225] | 329 | var bounds = Encoding.Bounds;
|
---|
| 330 | for (var j = 0; j < Encoding.Length; j++) {
|
---|
[15045] | 331 | var dim = j % bounds.Rows;
|
---|
| 332 | x[j] = random.NextDouble() * (bounds[dim, 1] - bounds[dim, 0]) + bounds[dim, 0];
|
---|
| 333 | }
|
---|
| 334 | solutions[i] = InitializeIndividual(x);
|
---|
| 335 | PenalizeEvaluate(solutions[i]);
|
---|
| 336 | }
|
---|
[15205] | 337 | ResultsEvaluations += solutions.Length;
|
---|
[15045] | 338 | }
|
---|
| 339 | private void InitStrategy() {
|
---|
| 340 | const int lambda = 1;
|
---|
[17225] | 341 | double n = Encoding.Length;
|
---|
[15045] | 342 | targetSuccessProbability = 1.0 / (5.0 + Math.Sqrt(lambda) / 2.0);
|
---|
| 343 | stepSizeDampeningFactor = 1.0 + n / (2.0 * lambda);
|
---|
| 344 | stepSizeLearningRate = targetSuccessProbability * lambda / (2.0 + targetSuccessProbability * lambda);
|
---|
| 345 | evolutionPathLearningRate = 2.0 / (n + 2.0);
|
---|
| 346 | covarianceMatrixLearningRate = 2.0 / (n * n + 6.0);
|
---|
| 347 | covarianceMatrixUnlearningRate = 0.4 / (Math.Pow(n, 1.6) + 1);
|
---|
| 348 | successThreshold = 0.44;
|
---|
| 349 | }
|
---|
| 350 | private void InitResults() {
|
---|
[17261] | 351 | Results.Add(new Result(IterationsResultName, "The number of generations evaluated", new IntValue(0)));
|
---|
| 352 | Results.Add(new Result(EvaluationsResultName, "The number of function evaluations performed", new IntValue(0)));
|
---|
| 353 | Results.Add(new Result(HypervolumeResultName, "The hyper volume of the current front considering the reference point defined in the Problem", new DoubleValue(0.0)));
|
---|
| 354 | Results.Add(new Result(BestHypervolumeResultName, "The best hyper volume of the current run considering the reference point defined in the Problem", new DoubleValue(0.0)));
|
---|
| 355 | Results.Add(new Result(BestKnownHypervolumeResultName, "The best known hyper volume considering the reference point defined in the Problem", new DoubleValue(double.NaN)));
|
---|
| 356 | Results.Add(new Result(DifferenceToBestKnownHypervolumeResultName, "The difference between the current and the best known hyper volume", new DoubleValue(double.NaN)));
|
---|
| 357 | Results.Add(new Result(GenerationalDistanceResultName, "The generational distance to an optimal Pareto front defined in the Problem", new DoubleValue(double.NaN)));
|
---|
| 358 | Results.Add(new Result(InvertedGenerationalDistanceResultName, "The inverted generational distance to an optimal Pareto front defined in the Problem", new DoubleValue(double.NaN)));
|
---|
[15045] | 359 | Results.Add(new Result(CrowdingResultName, "The average crowding value for the current front (excluding infinities)", new DoubleValue(0.0)));
|
---|
| 360 | Results.Add(new Result(SpacingResultName, "The spacing for the current front (excluding infinities)", new DoubleValue(0.0)));
|
---|
| 361 |
|
---|
| 362 | var table = new DataTable("QualityIndicators");
|
---|
| 363 | table.Rows.Add(new DataRow(BestHypervolumeResultName));
|
---|
| 364 | table.Rows.Add(new DataRow(HypervolumeResultName));
|
---|
| 365 | table.Rows.Add(new DataRow(CrowdingResultName));
|
---|
| 366 | table.Rows.Add(new DataRow(GenerationalDistanceResultName));
|
---|
| 367 | table.Rows.Add(new DataRow(InvertedGenerationalDistanceResultName));
|
---|
| 368 | table.Rows.Add(new DataRow(DifferenceToBestKnownHypervolumeResultName));
|
---|
| 369 | table.Rows.Add(new DataRow(SpacingResultName));
|
---|
[17261] | 370 | Results.Add(new Result(TimetableResultName, "Different quality measures in a time series", table));
|
---|
[15045] | 371 | Results.Add(new Result(CurrentFrontResultName, "The current front", new DoubleMatrix()));
|
---|
[17261] | 372 | Results.Add(new Result(ScatterPlotResultName, "A scatter plot displaying the evaluated solutions and (if available) the analytically optimal front", new ParetoFrontScatterPlot()));
|
---|
[15045] | 373 |
|
---|
[17225] | 374 | var problem = Problem;
|
---|
[15045] | 375 | if (problem == null) return;
|
---|
[17225] | 376 | var bkf = problem.BestKnownFront == null ? null : problem.BestKnownFront.ToArray();
|
---|
| 377 | if (bkf != null && problem.ReferencePoint != null) {
|
---|
[17315] | 378 | ResultsBestKnownHypervolume = HypervolumeCalculator.CalculateHypervolume(bkf, problem.ReferencePoint, Problem.Maximization);
|
---|
[15045] | 379 | ResultsDifferenceBestKnownHypervolume = ResultsBestKnownHypervolume;
|
---|
| 380 | }
|
---|
[17225] | 381 | ResultsScatterPlot = new ParetoFrontScatterPlot(new double[0][], new double[0][], bkf, Problem.Objectives, Problem.Encoding.Length);
|
---|
[15045] | 382 | }
|
---|
| 383 | #endregion
|
---|
| 384 |
|
---|
| 385 | #region Mainloop
|
---|
| 386 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[15335] | 387 | while (ResultsIterations < MaximumGenerations && ResultsEvaluations < MaximumEvaluatedSolutions) {
|
---|
[15045] | 388 | try {
|
---|
| 389 | Iterate();
|
---|
| 390 | ResultsIterations++;
|
---|
| 391 | cancellationToken.ThrowIfCancellationRequested();
|
---|
[15176] | 392 | } finally {
|
---|
[15045] | 393 | Analyze();
|
---|
| 394 | }
|
---|
| 395 | }
|
---|
| 396 | }
|
---|
| 397 | private void Iterate() {
|
---|
| 398 | var offspring = solutions.Select(i => {
|
---|
| 399 | var o = new Individual(i);
|
---|
| 400 | o.Mutate(gauss);
|
---|
| 401 | PenalizeEvaluate(o);
|
---|
| 402 | return o;
|
---|
| 403 | });
|
---|
[15205] | 404 | ResultsEvaluations += solutions.Length;
|
---|
[15045] | 405 | var parents = solutions.Concat(offspring).ToArray();
|
---|
| 406 | SelectParents(parents, solutions.Length);
|
---|
| 407 | UpdatePopulation(parents);
|
---|
| 408 | }
|
---|
| 409 | protected override void OnExecutionTimeChanged() {
|
---|
| 410 | base.OnExecutionTimeChanged();
|
---|
| 411 | if (CancellationTokenSource == null) return;
|
---|
| 412 | if (MaximumRuntime == -1) return;
|
---|
| 413 | if (ExecutionTime.TotalSeconds > MaximumRuntime) CancellationTokenSource.Cancel();
|
---|
| 414 | }
|
---|
| 415 | #endregion
|
---|
| 416 |
|
---|
| 417 | #region Evaluation
|
---|
| 418 | private void PenalizeEvaluate(Individual individual) {
|
---|
| 419 | if (IsFeasable(individual.Mean)) {
|
---|
| 420 | individual.Fitness = Evaluate(individual.Mean);
|
---|
| 421 | individual.PenalizedFitness = individual.Fitness;
|
---|
| 422 | } else {
|
---|
| 423 | var t = ClosestFeasible(individual.Mean);
|
---|
| 424 | individual.Fitness = Evaluate(t);
|
---|
| 425 | individual.PenalizedFitness = Penalize(individual.Mean, t, individual.Fitness);
|
---|
| 426 | }
|
---|
| 427 | }
|
---|
| 428 | private double[] Evaluate(RealVector x) {
|
---|
[16807] | 429 | var res = Problem.Evaluate(x, random);
|
---|
[15045] | 430 | return res;
|
---|
| 431 | }
|
---|
| 432 | private double[] Penalize(RealVector x, RealVector t, IEnumerable<double> fitness) {
|
---|
| 433 | var penalty = x.Zip(t, (a, b) => (a - b) * (a - b)).Sum() * 1E-6;
|
---|
| 434 | return fitness.Select((v, i) => Problem.Maximization[i] ? v - penalty : v + penalty).ToArray();
|
---|
| 435 | }
|
---|
| 436 | private RealVector ClosestFeasible(RealVector x) {
|
---|
[17225] | 437 | var bounds = Encoding.Bounds;
|
---|
[15045] | 438 | var r = new RealVector(x.Length);
|
---|
| 439 | for (var i = 0; i < x.Length; i++) {
|
---|
| 440 | var dim = i % bounds.Rows;
|
---|
| 441 | r[i] = Math.Min(Math.Max(bounds[dim, 0], x[i]), bounds[dim, 1]);
|
---|
| 442 | }
|
---|
| 443 | return r;
|
---|
| 444 | }
|
---|
| 445 | private bool IsFeasable(RealVector offspring) {
|
---|
[17225] | 446 | var bounds = Encoding.Bounds;
|
---|
[15045] | 447 | for (var i = 0; i < offspring.Length; i++) {
|
---|
| 448 | var dim = i % bounds.Rows;
|
---|
| 449 | if (bounds[dim, 0] > offspring[i] || offspring[i] > bounds[dim, 1]) return false;
|
---|
| 450 | }
|
---|
| 451 | return true;
|
---|
| 452 | }
|
---|
| 453 | #endregion
|
---|
| 454 |
|
---|
| 455 | private void SelectParents(IReadOnlyList<Individual> parents, int length) {
|
---|
[17261] | 456 | //perform a non-dominated sort to assign the rank to every element
|
---|
[15089] | 457 | int[] ranks;
|
---|
[17315] | 458 | var fronts = DominationCalculator.CalculateAllParetoFronts(parents.ToArray(), parents.Select(i => i.PenalizedFitness).ToArray(), Problem.Maximization, out ranks);
|
---|
[15045] | 459 |
|
---|
| 460 | //deselect the highest rank fronts until we would end up with less or equal mu elements
|
---|
| 461 | var rank = fronts.Count - 1;
|
---|
| 462 | var popSize = parents.Count;
|
---|
| 463 | while (popSize - fronts[rank].Count >= length) {
|
---|
| 464 | var front = fronts[rank];
|
---|
[15089] | 465 | foreach (var i in front) i.Item1.Selected = false;
|
---|
[15045] | 466 | popSize -= front.Count;
|
---|
| 467 | rank--;
|
---|
| 468 | }
|
---|
| 469 |
|
---|
[17261] | 470 | //now use the indicator to deselect the approximately worst elements of the last selected front
|
---|
[15089] | 471 | var front1 = fronts[rank].OrderBy(x => x.Item1.PenalizedFitness[0]).ToList();
|
---|
[15045] | 472 | for (; popSize > length; popSize--) {
|
---|
[15089] | 473 | var lc = Indicator.LeastContributer(front1.Select(i => i.Item1).ToArray(), Problem);
|
---|
| 474 | front1[lc].Item1.Selected = false;
|
---|
[15045] | 475 | front1.Swap(lc, front1.Count - 1);
|
---|
| 476 | front1.RemoveAt(front1.Count - 1);
|
---|
| 477 | }
|
---|
| 478 | }
|
---|
| 479 |
|
---|
| 480 | private void UpdatePopulation(IReadOnlyList<Individual> parents) {
|
---|
| 481 | foreach (var p in parents.Skip(solutions.Length).Where(i => i.Selected))
|
---|
| 482 | p.UpdateAsOffspring();
|
---|
| 483 | for (var i = 0; i < solutions.Length; i++)
|
---|
| 484 | if (parents[i].Selected)
|
---|
| 485 | parents[i].UpdateAsParent(parents[i + solutions.Length].Selected);
|
---|
| 486 | solutions = parents.Where(p => p.Selected).ToArray();
|
---|
| 487 | }
|
---|
| 488 |
|
---|
| 489 | private void Analyze() {
|
---|
[17225] | 490 | var qualities = solutions.Select(x => x.Fitness).ToArray();
|
---|
| 491 |
|
---|
| 492 | //to do check for side effects
|
---|
| 493 | ResultsScatterPlot = new ParetoFrontScatterPlot(qualities, solutions.Select(x => x.Mean.ToArray()).ToArray(), ResultsScatterPlot.ParetoFront, ResultsScatterPlot.Objectives, ResultsScatterPlot.ProblemSize);
|
---|
[15045] | 494 | ResultsSolutions = solutions.Select(x => x.Mean.ToArray()).ToMatrix();
|
---|
| 495 |
|
---|
[17225] | 496 | var problem = Problem as MultiObjectiveProblem<RealVectorEncoding, RealVector>;
|
---|
[15045] | 497 | if (problem == null) return;
|
---|
| 498 |
|
---|
[17225] | 499 |
|
---|
| 500 | if (qualities.Length == 0) return;
|
---|
| 501 | ResultsCrowding = CrowdingCalculator.CalculateCrowding(qualities);
|
---|
[17261] | 502 | ResultsSpacing = SpacingAnalyzer.CalculateSpacing(qualities);
|
---|
[17225] | 503 |
|
---|
| 504 |
|
---|
[17261] | 505 | ResultsGenerationalDistance = problem.BestKnownFront != null ? GenerationalDistanceAnalyzer.CalculateGenerationalDistance(qualities, problem.BestKnownFront, 1) : double.NaN;
|
---|
| 506 | ResultsInvertedGenerationalDistance = problem.BestKnownFront != null ? GenerationalDistanceAnalyzer.CalculateInverseGenerationalDistance(qualities, problem.BestKnownFront, 1) : double.NaN;
|
---|
[17225] | 507 | ResultsHypervolume = problem.ReferencePoint != null ? HypervolumeCalculator.CalculateHypervolume(qualities, problem.ReferencePoint, Problem.Maximization) : double.NaN;
|
---|
[15045] | 508 | ResultsBestHypervolume = Math.Max(ResultsHypervolume, ResultsBestHypervolume);
|
---|
| 509 | ResultsDifferenceBestKnownHypervolume = ResultsBestKnownHypervolume - ResultsBestHypervolume;
|
---|
| 510 |
|
---|
| 511 | ResultsBestHypervolumeDataLine.Values.Add(ResultsBestHypervolume);
|
---|
| 512 | ResultsHypervolumeDataLine.Values.Add(ResultsHypervolume);
|
---|
| 513 | ResultsCrowdingDataLine.Values.Add(ResultsCrowding);
|
---|
| 514 | ResultsGenerationalDistanceDataLine.Values.Add(ResultsGenerationalDistance);
|
---|
| 515 | ResultsInvertedGenerationalDistanceDataLine.Values.Add(ResultsInvertedGenerationalDistance);
|
---|
| 516 | ResultsSpacingDataLine.Values.Add(ResultsSpacing);
|
---|
| 517 | ResultsHypervolumeDifferenceDataLine.Values.Add(ResultsDifferenceBestKnownHypervolume);
|
---|
| 518 |
|
---|
[16807] | 519 | Problem.Analyze(solutions.Select(x => x.Mean).ToArray(),
|
---|
[15045] | 520 | solutions.Select(x => x.Fitness).ToArray(),
|
---|
| 521 | Results,
|
---|
| 522 | random);
|
---|
| 523 | }
|
---|
| 524 | }
|
---|
[17225] | 525 | } |
---|