[8430] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17226] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8430] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[16692] | 24 | using System.Threading;
|
---|
[8430] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
[16723] | 30 | using HEAL.Attic;
|
---|
[8430] | 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.DataAnalysis.TimeSeries {
|
---|
[13238] | 36 | [Item("Autoregressive Modeling (AR)", "Timeseries modeling algorithm that creates AR-N models.")]
|
---|
[12504] | 37 | [Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 130)]
|
---|
[16723] | 38 | [StorableType("3BB9D723-944A-420F-A44A-A86F6FB4DABE")]
|
---|
[8430] | 39 | public class AutoregressiveModeling : FixedDataAnalysisAlgorithm<ITimeSeriesPrognosisProblem> {
|
---|
| 40 | private const string TimeOffesetParameterName = "Maximum Time Offset";
|
---|
| 41 |
|
---|
| 42 | public IFixedValueParameter<IntValue> TimeOffsetParameter {
|
---|
| 43 | get { return (IFixedValueParameter<IntValue>)Parameters[TimeOffesetParameterName]; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | public int TimeOffset {
|
---|
| 48 | get { return TimeOffsetParameter.Value.Value; }
|
---|
| 49 | set { TimeOffsetParameter.Value.Value = value; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | [StorableConstructor]
|
---|
[16723] | 53 | protected AutoregressiveModeling(StorableConstructorFlag _) : base(_) { }
|
---|
[8430] | 54 | protected AutoregressiveModeling(AutoregressiveModeling original, Cloner cloner) : base(original, cloner) { }
|
---|
| 55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 56 | return new AutoregressiveModeling(this, cloner);
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | public AutoregressiveModeling()
|
---|
| 60 | : base() {
|
---|
| 61 | Parameters.Add(new FixedValueParameter<IntValue>(TimeOffesetParameterName, "The maximum time offset for the model ranging from 1 to infinity.", new IntValue(1)));
|
---|
| 62 | Problem = new TimeSeriesPrognosisProblem();
|
---|
| 63 | }
|
---|
| 64 |
|
---|
[16692] | 65 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[8430] | 66 | double rmsError, cvRmsError;
|
---|
| 67 | var solution = CreateAutoRegressiveSolution(Problem.ProblemData, TimeOffset, out rmsError, out cvRmsError);
|
---|
| 68 | Results.Add(new Result("Autoregressive solution", "The autoregressive time series prognosis solution.", solution));
|
---|
| 69 | Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the autoregressive time series prognosis solution on the training set.", new DoubleValue(rmsError)));
|
---|
| 70 | Results.Add(new Result("Estimated root mean square error (cross-validation)", "The estimated root of the mean of squared errors of the autoregressive time series prognosis solution via cross validation.", new DoubleValue(cvRmsError)));
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | /// <summary>
|
---|
| 74 | /// Calculates an AR(p) model. For further information see http://en.wikipedia.org/wiki/Autoregressive_model
|
---|
| 75 | /// </summary>
|
---|
| 76 | /// <param name="problemData">The problem data which should be used for training</param>
|
---|
| 77 | /// <param name="timeOffset">The parameter p of the AR(p) specifying the maximum time offset [1,infinity] </param>
|
---|
| 78 | /// <returns>The times series autoregressive solution </returns>
|
---|
[8762] | 79 | public static ITimeSeriesPrognosisSolution CreateAutoRegressiveSolution(ITimeSeriesPrognosisProblemData problemData, int timeOffset) {
|
---|
[8430] | 80 | double rmsError, cvRmsError;
|
---|
| 81 | return CreateAutoRegressiveSolution(problemData, timeOffset, out rmsError, out cvRmsError);
|
---|
| 82 | }
|
---|
| 83 |
|
---|
[8762] | 84 | private static ITimeSeriesPrognosisSolution CreateAutoRegressiveSolution(ITimeSeriesPrognosisProblemData problemData, int timeOffset, out double rmsError, out double cvRmsError) {
|
---|
[8430] | 85 | string targetVariable = problemData.TargetVariable;
|
---|
| 86 |
|
---|
| 87 | double[,] inputMatrix = new double[problemData.TrainingPartition.Size, timeOffset + 1];
|
---|
[8762] | 88 | var targetValues = problemData.Dataset.GetDoubleValues(targetVariable).ToList();
|
---|
[8430] | 89 | for (int i = 0, row = problemData.TrainingPartition.Start; i < problemData.TrainingPartition.Size; i++, row++) {
|
---|
[8762] | 90 | for (int col = 0; col < timeOffset; col++) {
|
---|
| 91 | inputMatrix[i, col] = targetValues[row - col - 1];
|
---|
[8430] | 92 | }
|
---|
| 93 | }
|
---|
[8762] | 94 | // set target values in last column
|
---|
| 95 | for (int i = 0; i < inputMatrix.GetLength(0); i++)
|
---|
| 96 | inputMatrix[i, timeOffset] = targetValues[i + problemData.TrainingPartition.Start];
|
---|
[8430] | 97 |
|
---|
[16723] | 98 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
[8430] | 99 | throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset.");
|
---|
| 100 |
|
---|
| 101 |
|
---|
[12817] | 102 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
| 103 | alglib.lrreport ar = new alglib.lrreport();
|
---|
[8430] | 104 | int nRows = inputMatrix.GetLength(0);
|
---|
| 105 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
| 106 | double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
|
---|
| 107 |
|
---|
| 108 | int retVal = 1;
|
---|
| 109 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
| 110 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
|
---|
| 111 | rmsError = ar.rmserror;
|
---|
| 112 | cvRmsError = ar.cvrmserror;
|
---|
| 113 |
|
---|
| 114 | alglib.lrunpack(lm, out coefficients, out nFeatures);
|
---|
| 115 |
|
---|
[16692] | 116 | var tree = LinearModelToTreeConverter.CreateTree(
|
---|
| 117 | variableNames: Enumerable.Repeat(problemData.TargetVariable, nFeatures).ToArray(),
|
---|
| 118 | lags: Enumerable.Range(0, timeOffset).Select(i => (i + 1) * -1).ToArray(),
|
---|
| 119 | coefficients: coefficients.Take(nFeatures).ToArray(),
|
---|
| 120 | @const: coefficients[nFeatures]
|
---|
| 121 | );
|
---|
[8430] | 122 |
|
---|
| 123 | var interpreter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(problemData.TargetVariable);
|
---|
[16692] | 124 | var model = new SymbolicTimeSeriesPrognosisModel(problemData.TargetVariable, tree, interpreter);
|
---|
[8430] | 125 | var solution = model.CreateTimeSeriesPrognosisSolution((ITimeSeriesPrognosisProblemData)problemData.Clone());
|
---|
| 126 | return solution;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|