[12946] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17226] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12946] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[17320] | 24 | using System.Threading;
|
---|
[16813] | 25 | using HEAL.Attic;
|
---|
[12946] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[13160] | 30 | using HeuristicLab.Optimization;
|
---|
[12946] | 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 | using HeuristicLab.Problems.Instances;
|
---|
| 34 |
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 37 | [Item("Gaussian Process Covariance Optimization Problem", "")]
|
---|
| 38 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 300)]
|
---|
[16723] | 39 | [StorableType("A3EA7CE7-78FA-48FF-9DD5-FBE5AB770A99")]
|
---|
[13209] | 40 | public sealed class GaussianProcessCovarianceOptimizationProblem : SymbolicExpressionTreeProblem, IStatefulItem, IRegressionProblem, IProblemInstanceConsumer<IRegressionProblemData>, IProblemInstanceExporter<IRegressionProblemData> {
|
---|
[12946] | 41 | #region static variables and ctor
|
---|
| 42 | private static readonly CovarianceMaternIso maternIso1;
|
---|
| 43 | private static readonly CovarianceMaternIso maternIso3;
|
---|
| 44 | private static readonly CovarianceMaternIso maternIso5;
|
---|
| 45 | private static readonly CovariancePiecewisePolynomial piecewisePoly0;
|
---|
| 46 | private static readonly CovariancePiecewisePolynomial piecewisePoly1;
|
---|
| 47 | private static readonly CovariancePiecewisePolynomial piecewisePoly2;
|
---|
| 48 | private static readonly CovariancePiecewisePolynomial piecewisePoly3;
|
---|
| 49 | private static readonly CovariancePolynomial poly2;
|
---|
| 50 | private static readonly CovariancePolynomial poly3;
|
---|
| 51 | private static readonly CovarianceSpectralMixture spectralMixture1;
|
---|
| 52 | private static readonly CovarianceSpectralMixture spectralMixture3;
|
---|
| 53 | private static readonly CovarianceSpectralMixture spectralMixture5;
|
---|
| 54 | private static readonly CovarianceLinear linear;
|
---|
| 55 | private static readonly CovarianceLinearArd linearArd;
|
---|
| 56 | private static readonly CovarianceNeuralNetwork neuralNetwork;
|
---|
| 57 | private static readonly CovariancePeriodic periodic;
|
---|
| 58 | private static readonly CovarianceRationalQuadraticIso ratQuadraticIso;
|
---|
| 59 | private static readonly CovarianceRationalQuadraticArd ratQuadraticArd;
|
---|
| 60 | private static readonly CovarianceSquaredExponentialArd sqrExpArd;
|
---|
| 61 | private static readonly CovarianceSquaredExponentialIso sqrExpIso;
|
---|
| 62 |
|
---|
| 63 | static GaussianProcessCovarianceOptimizationProblem() {
|
---|
| 64 | // cumbersome initialization because of ConstrainedValueParameters
|
---|
| 65 | maternIso1 = new CovarianceMaternIso(); SetConstrainedValueParameter(maternIso1.DParameter, 1);
|
---|
| 66 | maternIso3 = new CovarianceMaternIso(); SetConstrainedValueParameter(maternIso3.DParameter, 3);
|
---|
| 67 | maternIso5 = new CovarianceMaternIso(); SetConstrainedValueParameter(maternIso5.DParameter, 5);
|
---|
| 68 |
|
---|
| 69 | piecewisePoly0 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly0.VParameter, 0);
|
---|
| 70 | piecewisePoly1 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly1.VParameter, 1);
|
---|
| 71 | piecewisePoly2 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly2.VParameter, 2);
|
---|
| 72 | piecewisePoly3 = new CovariancePiecewisePolynomial(); SetConstrainedValueParameter(piecewisePoly3.VParameter, 3);
|
---|
| 73 |
|
---|
| 74 | poly2 = new CovariancePolynomial(); poly2.DegreeParameter.Value.Value = 2;
|
---|
| 75 | poly3 = new CovariancePolynomial(); poly3.DegreeParameter.Value.Value = 3;
|
---|
| 76 |
|
---|
| 77 | spectralMixture1 = new CovarianceSpectralMixture(); spectralMixture1.QParameter.Value.Value = 1;
|
---|
| 78 | spectralMixture3 = new CovarianceSpectralMixture(); spectralMixture3.QParameter.Value.Value = 3;
|
---|
| 79 | spectralMixture5 = new CovarianceSpectralMixture(); spectralMixture5.QParameter.Value.Value = 5;
|
---|
| 80 |
|
---|
| 81 | linear = new CovarianceLinear();
|
---|
| 82 | linearArd = new CovarianceLinearArd();
|
---|
| 83 | neuralNetwork = new CovarianceNeuralNetwork();
|
---|
| 84 | periodic = new CovariancePeriodic();
|
---|
| 85 | ratQuadraticArd = new CovarianceRationalQuadraticArd();
|
---|
| 86 | ratQuadraticIso = new CovarianceRationalQuadraticIso();
|
---|
| 87 | sqrExpArd = new CovarianceSquaredExponentialArd();
|
---|
| 88 | sqrExpIso = new CovarianceSquaredExponentialIso();
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | private static void SetConstrainedValueParameter(IConstrainedValueParameter<IntValue> param, int val) {
|
---|
| 92 | param.Value = param.ValidValues.Single(v => v.Value == val);
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | #endregion
|
---|
| 96 |
|
---|
| 97 | #region parameter names
|
---|
| 98 |
|
---|
| 99 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 100 | private const string ConstantOptIterationsParameterName = "Constant optimization steps";
|
---|
| 101 | private const string RestartsParameterName = "Restarts";
|
---|
| 102 |
|
---|
| 103 | #endregion
|
---|
| 104 |
|
---|
| 105 | #region Parameter Properties
|
---|
| 106 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 107 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 108 | }
|
---|
| 109 | public IFixedValueParameter<IntValue> ConstantOptIterationsParameter {
|
---|
| 110 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptIterationsParameterName]; }
|
---|
| 111 | }
|
---|
| 112 | public IFixedValueParameter<IntValue> RestartsParameter {
|
---|
| 113 | get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
|
---|
| 114 | }
|
---|
| 115 | #endregion
|
---|
| 116 |
|
---|
| 117 | #region Properties
|
---|
| 118 |
|
---|
| 119 | public IRegressionProblemData ProblemData {
|
---|
| 120 | get { return ProblemDataParameter.Value; }
|
---|
| 121 | set { ProblemDataParameter.Value = value; }
|
---|
| 122 | }
|
---|
| 123 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
| 124 |
|
---|
| 125 | public int ConstantOptIterations {
|
---|
| 126 | get { return ConstantOptIterationsParameter.Value.Value; }
|
---|
| 127 | set { ConstantOptIterationsParameter.Value.Value = value; }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | public int Restarts {
|
---|
| 131 | get { return RestartsParameter.Value.Value; }
|
---|
| 132 | set { RestartsParameter.Value.Value = value; }
|
---|
| 133 | }
|
---|
| 134 | #endregion
|
---|
| 135 |
|
---|
[13200] | 136 | // problem stores a few variables for information exchange from Evaluate() to Analyze()
|
---|
[13209] | 137 | private readonly object problemStateLocker = new object();
|
---|
[13200] | 138 | [Storable]
|
---|
| 139 | private double bestQ;
|
---|
| 140 | [Storable]
|
---|
| 141 | private double[] bestHyperParameters;
|
---|
| 142 | [Storable]
|
---|
| 143 | private IMeanFunction meanFunc;
|
---|
| 144 | [Storable]
|
---|
| 145 | private ICovarianceFunction covFunc;
|
---|
| 146 |
|
---|
[16813] | 147 | public GaussianProcessCovarianceOptimizationProblem() : base(new SymbolicExpressionTreeEncoding()) {
|
---|
[17270] | 148 | Maximization = true; // return log likelihood (instead of negative log likelihood as in GPR)
|
---|
[12946] | 149 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data for the regression problem", new RegressionProblemData()));
|
---|
| 150 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptIterationsParameterName, "Number of optimization steps for hyperparameter values", new IntValue(50)));
|
---|
| 151 | Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of random restarts for constant optimization.", new IntValue(10)));
|
---|
| 152 | Parameters["Restarts"].Hidden = true;
|
---|
[16813] | 153 |
|
---|
| 154 |
|
---|
[12946] | 155 | var g = new SimpleSymbolicExpressionGrammar();
|
---|
| 156 | g.AddSymbols(new string[] { "Sum", "Product" }, 2, 2);
|
---|
| 157 | g.AddTerminalSymbols(new string[]
|
---|
| 158 | {
|
---|
| 159 | "Linear",
|
---|
| 160 | "LinearArd",
|
---|
| 161 | "MaternIso1",
|
---|
| 162 | "MaternIso3",
|
---|
| 163 | "MaternIso5",
|
---|
| 164 | "NeuralNetwork",
|
---|
| 165 | "Periodic",
|
---|
| 166 | "PiecewisePolynomial0",
|
---|
| 167 | "PiecewisePolynomial1",
|
---|
| 168 | "PiecewisePolynomial2",
|
---|
| 169 | "PiecewisePolynomial3",
|
---|
| 170 | "Polynomial2",
|
---|
| 171 | "Polynomial3",
|
---|
| 172 | "RationalQuadraticArd",
|
---|
| 173 | "RationalQuadraticIso",
|
---|
| 174 | "SpectralMixture1",
|
---|
| 175 | "SpectralMixture3",
|
---|
| 176 | "SpectralMixture5",
|
---|
| 177 | "SquaredExponentialArd",
|
---|
| 178 | "SquaredExponentialIso"
|
---|
| 179 | });
|
---|
[16813] | 180 |
|
---|
| 181 | Encoding.TreeLength = 10;
|
---|
| 182 | Encoding.TreeDepth = 5;
|
---|
| 183 | Encoding.Grammar = g;
|
---|
[17655] | 184 | Encoding.GrammarParameter.ReadOnly = GrammarRefParameter.ReadOnly = true;
|
---|
[12946] | 185 | }
|
---|
| 186 |
|
---|
[13209] | 187 | public void InitializeState() { ClearState(); }
|
---|
| 188 | public void ClearState() {
|
---|
[13200] | 189 | meanFunc = null;
|
---|
| 190 | covFunc = null;
|
---|
| 191 | bestQ = double.NegativeInfinity;
|
---|
| 192 | bestHyperParameters = null;
|
---|
| 193 | }
|
---|
[12946] | 194 |
|
---|
[13242] | 195 | private readonly object syncRoot = new object();
|
---|
[13234] | 196 | // Does not produce the same result for the same seed when using parallel engine (see below)!
|
---|
[17382] | 197 | public override ISingleObjectiveEvaluationResult Evaluate(ISymbolicExpressionTree tree, IRandom random, CancellationToken cancellationToken) {
|
---|
[12946] | 198 | var meanFunction = new MeanConst();
|
---|
| 199 | var problemData = ProblemData;
|
---|
| 200 | var ds = problemData.Dataset;
|
---|
| 201 | var targetVariable = problemData.TargetVariable;
|
---|
| 202 | var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
|
---|
| 203 | var nVars = allowedInputVariables.Length;
|
---|
| 204 | var trainingRows = problemData.TrainingIndices.ToArray();
|
---|
| 205 |
|
---|
| 206 | // use the same covariance function for each restart
|
---|
| 207 | var covarianceFunction = TreeToCovarianceFunction(tree);
|
---|
| 208 |
|
---|
| 209 | // allocate hyperparameters
|
---|
| 210 | var hyperParameters = new double[meanFunction.GetNumberOfParameters(nVars) + covarianceFunction.GetNumberOfParameters(nVars) + 1]; // mean + cov + noise
|
---|
| 211 | double[] bestHyperParameters = new double[hyperParameters.Length];
|
---|
| 212 | var bestObjValue = new double[1] { double.MinValue };
|
---|
| 213 |
|
---|
| 214 | // data that is necessary for the objective function
|
---|
| 215 | var data = Tuple.Create(ds, targetVariable, allowedInputVariables, trainingRows, (IMeanFunction)meanFunction, covarianceFunction, bestObjValue);
|
---|
| 216 |
|
---|
| 217 | for (int t = 0; t < Restarts; t++) {
|
---|
| 218 | var prevBest = bestObjValue[0];
|
---|
| 219 | var prevBestHyperParameters = new double[hyperParameters.Length];
|
---|
| 220 | Array.Copy(bestHyperParameters, prevBestHyperParameters, bestHyperParameters.Length);
|
---|
| 221 |
|
---|
| 222 | // initialize hyperparameters
|
---|
| 223 | hyperParameters[0] = ds.GetDoubleValues(targetVariable).Average(); // mean const
|
---|
| 224 |
|
---|
[13234] | 225 | // Evaluate might be called concurrently therefore access to random has to be synchronized.
|
---|
| 226 | // However, results of multiple runs with the same seed will be different when using the parallel engine.
|
---|
[13242] | 227 | lock (syncRoot) {
|
---|
[13234] | 228 | for (int i = 0; i < covarianceFunction.GetNumberOfParameters(nVars); i++) {
|
---|
| 229 | hyperParameters[1 + i] = random.NextDouble() * 2.0 - 1.0;
|
---|
| 230 | }
|
---|
[12946] | 231 | }
|
---|
| 232 | hyperParameters[hyperParameters.Length - 1] = 1.0; // s² = exp(2), TODO: other inits better?
|
---|
| 233 |
|
---|
| 234 | // use alglib.bfgs for hyper-parameter optimization ...
|
---|
| 235 | double epsg = 0;
|
---|
| 236 | double epsf = 0.00001;
|
---|
| 237 | double epsx = 0;
|
---|
| 238 | double stpmax = 1;
|
---|
| 239 | int maxits = ConstantOptIterations;
|
---|
| 240 | alglib.mincgstate state;
|
---|
| 241 | alglib.mincgreport rep;
|
---|
| 242 |
|
---|
| 243 | alglib.mincgcreate(hyperParameters, out state);
|
---|
| 244 | alglib.mincgsetcond(state, epsg, epsf, epsx, maxits);
|
---|
| 245 | alglib.mincgsetstpmax(state, stpmax);
|
---|
| 246 | alglib.mincgoptimize(state, ObjectiveFunction, null, data);
|
---|
| 247 |
|
---|
| 248 | alglib.mincgresults(state, out bestHyperParameters, out rep);
|
---|
| 249 |
|
---|
| 250 | if (rep.terminationtype < 0) {
|
---|
| 251 | // error -> restore previous best quality
|
---|
| 252 | bestObjValue[0] = prevBest;
|
---|
| 253 | Array.Copy(prevBestHyperParameters, bestHyperParameters, prevBestHyperParameters.Length);
|
---|
| 254 | }
|
---|
| 255 | }
|
---|
| 256 |
|
---|
[13200] | 257 | UpdateBestSoFar(bestObjValue[0], bestHyperParameters, meanFunction, covarianceFunction);
|
---|
| 258 |
|
---|
[17382] | 259 | var quality = bestObjValue[0];
|
---|
| 260 | return new SingleObjectiveEvaluationResult(quality);
|
---|
[12946] | 261 | }
|
---|
| 262 |
|
---|
[13200] | 263 | // updates the overall best quality and overall best model for Analyze()
|
---|
| 264 | private void UpdateBestSoFar(double bestQ, double[] bestHyperParameters, IMeanFunction meanFunc, ICovarianceFunction covFunc) {
|
---|
| 265 | lock (problemStateLocker) {
|
---|
| 266 | if (bestQ > this.bestQ) {
|
---|
| 267 | this.bestQ = bestQ;
|
---|
[13201] | 268 | this.bestHyperParameters = new double[bestHyperParameters.Length];
|
---|
| 269 | Array.Copy(bestHyperParameters, this.bestHyperParameters, this.bestHyperParameters.Length);
|
---|
[13200] | 270 | this.meanFunc = meanFunc;
|
---|
| 271 | this.covFunc = covFunc;
|
---|
| 272 | }
|
---|
| 273 | }
|
---|
| 274 | }
|
---|
| 275 |
|
---|
[13160] | 276 |
|
---|
[17745] | 277 | public override void Analyze(ISingleObjectiveSolutionContext<ISymbolicExpressionTree>[] solutionContexts, IRandom random) {
|
---|
| 278 | //TODO: reimplement code below with results parameter
|
---|
[13160] | 279 |
|
---|
[17745] | 280 | //if (!results.ContainsKey("Best Solution Quality")) {
|
---|
| 281 | // results.Add(new Result("Best Solution Quality", typeof(DoubleValue)));
|
---|
| 282 | //}
|
---|
| 283 | //if (!results.ContainsKey("Best Tree")) {
|
---|
| 284 | // results.Add(new Result("Best Tree", typeof(ISymbolicExpressionTree)));
|
---|
| 285 | //}
|
---|
| 286 | //if (!results.ContainsKey("Best Solution")) {
|
---|
| 287 | // results.Add(new Result("Best Solution", typeof(GaussianProcessRegressionSolution)));
|
---|
| 288 | //}
|
---|
| 289 |
|
---|
| 290 | //var bestQuality = qualities.Max();
|
---|
| 291 |
|
---|
| 292 | //if (results["Best Solution Quality"].Value == null || bestQuality > ((DoubleValue)results["Best Solution Quality"].Value).Value) {
|
---|
| 293 | // var bestIdx = Array.IndexOf(qualities, bestQuality);
|
---|
| 294 | // var bestClone = (ISymbolicExpressionTree)trees[bestIdx].Clone();
|
---|
| 295 | // results["Best Tree"].Value = bestClone;
|
---|
| 296 | // results["Best Solution Quality"].Value = new DoubleValue(bestQuality);
|
---|
| 297 | // results["Best Solution"].Value = CreateSolution();
|
---|
| 298 | //}
|
---|
[13160] | 299 | }
|
---|
| 300 |
|
---|
[13200] | 301 | private IItem CreateSolution() {
|
---|
[13160] | 302 | var problemData = ProblemData;
|
---|
| 303 | var ds = problemData.Dataset;
|
---|
| 304 | var targetVariable = problemData.TargetVariable;
|
---|
| 305 | var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
|
---|
| 306 | var trainingRows = problemData.TrainingIndices.ToArray();
|
---|
| 307 |
|
---|
[13200] | 308 | lock (problemStateLocker) {
|
---|
| 309 | var model = new GaussianProcessModel(ds, targetVariable, allowedInputVariables, trainingRows, bestHyperParameters, (IMeanFunction)meanFunc.Clone(), (ICovarianceFunction)covFunc.Clone());
|
---|
| 310 | model.FixParameters();
|
---|
| 311 | return model.CreateRegressionSolution((IRegressionProblemData)ProblemData.Clone());
|
---|
[13160] | 312 | }
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | private void ObjectiveFunction(double[] x, ref double func, double[] grad, object obj) {
|
---|
[12946] | 316 | // we want to optimize the model likelihood by changing the hyperparameters and also return the gradient for each hyperparameter
|
---|
| 317 | var data = (Tuple<IDataset, string, string[], int[], IMeanFunction, ICovarianceFunction, double[]>)obj;
|
---|
| 318 | var ds = data.Item1;
|
---|
| 319 | var targetVariable = data.Item2;
|
---|
| 320 | var allowedInputVariables = data.Item3;
|
---|
| 321 | var trainingRows = data.Item4;
|
---|
| 322 | var meanFunction = data.Item5;
|
---|
| 323 | var covarianceFunction = data.Item6;
|
---|
| 324 | var bestObjValue = data.Item7;
|
---|
| 325 | var hyperParameters = x; // the decision variable vector
|
---|
| 326 |
|
---|
| 327 | try {
|
---|
| 328 | var model = new GaussianProcessModel(ds, targetVariable, allowedInputVariables, trainingRows, hyperParameters, meanFunction, covarianceFunction);
|
---|
| 329 |
|
---|
| 330 | func = model.NegativeLogLikelihood; // mincgoptimize, so we return negative likelihood
|
---|
| 331 | bestObjValue[0] = Math.Max(bestObjValue[0], -func); // problem itself is a maximization problem
|
---|
| 332 | var gradients = model.HyperparameterGradients;
|
---|
| 333 | Array.Copy(gradients, grad, gradients.Length);
|
---|
[16813] | 334 | } catch (ArgumentException) {
|
---|
[12946] | 335 | // building the GaussianProcessModel might fail, in this case we return the worst possible objective value
|
---|
| 336 | func = 1.0E+300;
|
---|
| 337 | Array.Clear(grad, 0, grad.Length);
|
---|
| 338 | }
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | private ICovarianceFunction TreeToCovarianceFunction(ISymbolicExpressionTree tree) {
|
---|
| 342 | return TreeToCovarianceFunction(tree.Root.GetSubtree(0).GetSubtree(0)); // skip programroot and startsymbol
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | private ICovarianceFunction TreeToCovarianceFunction(ISymbolicExpressionTreeNode node) {
|
---|
| 346 | switch (node.Symbol.Name) {
|
---|
| 347 | case "Sum": {
|
---|
| 348 | var sum = new CovarianceSum();
|
---|
| 349 | sum.Terms.Add(TreeToCovarianceFunction(node.GetSubtree(0)));
|
---|
| 350 | sum.Terms.Add(TreeToCovarianceFunction(node.GetSubtree(1)));
|
---|
| 351 | return sum;
|
---|
| 352 | }
|
---|
| 353 | case "Product": {
|
---|
| 354 | var prod = new CovarianceProduct();
|
---|
| 355 | prod.Factors.Add(TreeToCovarianceFunction(node.GetSubtree(0)));
|
---|
| 356 | prod.Factors.Add(TreeToCovarianceFunction(node.GetSubtree(1)));
|
---|
| 357 | return prod;
|
---|
| 358 | }
|
---|
| 359 | // covFunction is cloned by the model so we can reuse instances of terminal covariance functions
|
---|
| 360 | case "Linear": return linear;
|
---|
| 361 | case "LinearArd": return linearArd;
|
---|
| 362 | case "MaternIso1": return maternIso1;
|
---|
| 363 | case "MaternIso3": return maternIso3;
|
---|
| 364 | case "MaternIso5": return maternIso5;
|
---|
| 365 | case "NeuralNetwork": return neuralNetwork;
|
---|
| 366 | case "Periodic": return periodic;
|
---|
| 367 | case "PiecewisePolynomial0": return piecewisePoly0;
|
---|
| 368 | case "PiecewisePolynomial1": return piecewisePoly1;
|
---|
| 369 | case "PiecewisePolynomial2": return piecewisePoly2;
|
---|
| 370 | case "PiecewisePolynomial3": return piecewisePoly3;
|
---|
| 371 | case "Polynomial2": return poly2;
|
---|
| 372 | case "Polynomial3": return poly3;
|
---|
| 373 | case "RationalQuadraticArd": return ratQuadraticArd;
|
---|
| 374 | case "RationalQuadraticIso": return ratQuadraticIso;
|
---|
| 375 | case "SpectralMixture1": return spectralMixture1;
|
---|
| 376 | case "SpectralMixture3": return spectralMixture3;
|
---|
| 377 | case "SpectralMixture5": return spectralMixture5;
|
---|
| 378 | case "SquaredExponentialArd": return sqrExpArd;
|
---|
| 379 | case "SquaredExponentialIso": return sqrExpIso;
|
---|
| 380 | default: throw new InvalidProgramException(string.Format("Found invalid symbol {0}", node.Symbol.Name));
|
---|
| 381 | }
|
---|
| 382 | }
|
---|
| 383 |
|
---|
| 384 |
|
---|
| 385 | // persistence
|
---|
| 386 | [StorableConstructor]
|
---|
[16723] | 387 | private GaussianProcessCovarianceOptimizationProblem(StorableConstructorFlag _) : base(_) { }
|
---|
[12946] | 388 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 389 | private void AfterDeserialization() {
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 | // cloning
|
---|
| 393 | private GaussianProcessCovarianceOptimizationProblem(GaussianProcessCovarianceOptimizationProblem original, Cloner cloner)
|
---|
| 394 | : base(original, cloner) {
|
---|
[13200] | 395 | bestQ = original.bestQ;
|
---|
| 396 | meanFunc = cloner.Clone(original.meanFunc);
|
---|
| 397 | covFunc = cloner.Clone(original.covFunc);
|
---|
| 398 | if (bestHyperParameters != null) {
|
---|
| 399 | bestHyperParameters = new double[original.bestHyperParameters.Length];
|
---|
| 400 | Array.Copy(original.bestHyperParameters, bestHyperParameters, bestHyperParameters.Length);
|
---|
| 401 | }
|
---|
[12946] | 402 | }
|
---|
| 403 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 404 | return new GaussianProcessCovarianceOptimizationProblem(this, cloner);
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | public void Load(IRegressionProblemData data) {
|
---|
| 408 | this.ProblemData = data;
|
---|
| 409 | OnProblemDataChanged();
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | public IRegressionProblemData Export() {
|
---|
| 413 | return ProblemData;
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | #region events
|
---|
| 417 | public event EventHandler ProblemDataChanged;
|
---|
| 418 |
|
---|
| 419 |
|
---|
| 420 | private void OnProblemDataChanged() {
|
---|
| 421 | var handler = ProblemDataChanged;
|
---|
| 422 | if (handler != null)
|
---|
| 423 | handler(this, EventArgs.Empty);
|
---|
| 424 | }
|
---|
| 425 | #endregion
|
---|
| 426 |
|
---|
| 427 | }
|
---|
| 428 | }
|
---|