1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Random;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
28 | public class KeijzerFunctionFive : ArtificialRegressionDataDescriptor {
|
---|
29 |
|
---|
30 | public override string Name { get { return "Keijzer 5 f(x) = (30 * x * z) / ((x - 10) * y²)"; } }
|
---|
31 | public override string Description {
|
---|
32 | get {
|
---|
33 | return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
|
---|
34 | + "Authors: Maarten Keijzer" + Environment.NewLine
|
---|
35 | + "Function: f(x) = (30 * x * z) / ((x - 10) * y²)" + Environment.NewLine
|
---|
36 | + "range(train): 1000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine
|
---|
37 | + "range(test): 10000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine
|
---|
38 | + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
|
---|
39 | }
|
---|
40 | }
|
---|
41 | protected override string TargetVariable { get { return "F"; } }
|
---|
42 | protected override string[] VariableNames { get { return new string[] { "X", "Y", "Z", "F" }; } }
|
---|
43 | protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y", "Z" }; } }
|
---|
44 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
45 | protected override int TrainingPartitionEnd { get { return 1000; } }
|
---|
46 | protected override int TestPartitionStart { get { return 1000; } }
|
---|
47 | protected override int TestPartitionEnd { get { return 11000; } }
|
---|
48 | public int Seed { get; private set; }
|
---|
49 |
|
---|
50 | public KeijzerFunctionFive() : this((int)System.DateTime.Now.Ticks) {
|
---|
51 | }
|
---|
52 | public KeijzerFunctionFive(int seed) : base() {
|
---|
53 | Seed = seed;
|
---|
54 | }
|
---|
55 | protected override List<List<double>> GenerateValues() {
|
---|
56 | List<List<double>> data = new List<List<double>>();
|
---|
57 | var rand = new MersenneTwister((uint)Seed);
|
---|
58 |
|
---|
59 | data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -1, 1).ToList());
|
---|
60 | data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList());
|
---|
61 | data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -1, 1).ToList());
|
---|
62 |
|
---|
63 | double x, y, z;
|
---|
64 | List<double> results = new List<double>();
|
---|
65 | for (int i = 0; i < data[0].Count; i++) {
|
---|
66 | x = data[0][i];
|
---|
67 | y = data[1][i];
|
---|
68 | z = data[2][i];
|
---|
69 | results.Add((30 * x * z) / ((x - 10) * Math.Pow(y, 2)));
|
---|
70 | }
|
---|
71 | data.Add(results);
|
---|
72 |
|
---|
73 | return data;
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|