[5540] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16453] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5540] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[5601] | 22 | using System;
|
---|
[5540] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
[5586] | 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
[16559] | 29 | using HEAL.Attic;
|
---|
[5540] | 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
[16462] | 32 | [StorableType("EE612297-B1AF-42D2-BF21-AF9A2D42791C")]
|
---|
[5601] | 33 | [Item("RegressionProblemData", "Represents an item containing all data defining a regression problem.")]
|
---|
[7134] | 34 | public class RegressionProblemData : DataAnalysisProblemData, IRegressionProblemData, IStorableContent {
|
---|
[6666] | 35 | protected const string TargetVariableParameterName = "TargetVariable";
|
---|
[7134] | 36 | public string Filename { get; set; }
|
---|
[5540] | 37 |
|
---|
[5554] | 38 | #region default data
|
---|
| 39 | private static double[,] kozaF1 = new double[,] {
|
---|
[15396] | 40 | {2.017885919, -1.449165046},
|
---|
| 41 | {1.30060506, -1.344523885},
|
---|
| 42 | {1.147134798, -1.317989331},
|
---|
| 43 | {0.877182504, -1.266142284},
|
---|
| 44 | {0.852562452, -1.261020794},
|
---|
| 45 | {0.431095788, -1.158793317},
|
---|
| 46 | {0.112586002, -1.050908405},
|
---|
| 47 | {0.04594507, -1.021989402},
|
---|
| 48 | {0.042572879, -1.020438113},
|
---|
| 49 | {-0.074027291, -0.959859562},
|
---|
| 50 | {-0.109178553, -0.938094706},
|
---|
| 51 | {-0.259721109, -0.803635355},
|
---|
| 52 | {-0.272991057, -0.387519561},
|
---|
| 53 | {-0.161978191, -0.193611001},
|
---|
| 54 | {-0.102489983, -0.114215349},
|
---|
| 55 | {-0.01469968, -0.014918985},
|
---|
| 56 | {-0.008863365, -0.008942626},
|
---|
| 57 | {0.026751057, 0.026054094},
|
---|
| 58 | {0.166922436, 0.14309643},
|
---|
| 59 | {0.176953808, 0.1504144},
|
---|
| 60 | {0.190233418, 0.159916534},
|
---|
| 61 | {0.199800708, 0.166635331},
|
---|
| 62 | {0.261502822, 0.207600348},
|
---|
| 63 | {0.30182879, 0.232370249},
|
---|
| 64 | {0.83763905, 0.468046718}
|
---|
[5554] | 65 | };
|
---|
[6672] | 66 | private static readonly Dataset defaultDataset;
|
---|
| 67 | private static readonly IEnumerable<string> defaultAllowedInputVariables;
|
---|
| 68 | private static readonly string defaultTargetVariable;
|
---|
[5554] | 69 |
|
---|
[6672] | 70 | private static readonly RegressionProblemData emptyProblemData;
|
---|
[6666] | 71 | public static RegressionProblemData EmptyProblemData {
|
---|
| 72 | get { return emptyProblemData; }
|
---|
| 73 | }
|
---|
| 74 |
|
---|
[5554] | 75 | static RegressionProblemData() {
|
---|
| 76 | defaultDataset = new Dataset(new string[] { "y", "x" }, kozaF1);
|
---|
[5559] | 77 | defaultDataset.Name = "Fourth-order Polynomial Function Benchmark Dataset";
|
---|
| 78 | defaultDataset.Description = "f(x) = x^4 + x^3 + x^2 + x^1";
|
---|
[5554] | 79 | defaultAllowedInputVariables = new List<string>() { "x" };
|
---|
| 80 | defaultTargetVariable = "y";
|
---|
[6666] | 81 |
|
---|
| 82 | var problemData = new RegressionProblemData();
|
---|
| 83 | problemData.Parameters.Clear();
|
---|
| 84 | problemData.Name = "Empty Regression ProblemData";
|
---|
| 85 | problemData.Description = "This ProblemData acts as place holder before the correct problem data is loaded.";
|
---|
| 86 | problemData.isEmpty = true;
|
---|
| 87 |
|
---|
| 88 | problemData.Parameters.Add(new FixedValueParameter<Dataset>(DatasetParameterName, "", new Dataset()));
|
---|
| 89 | problemData.Parameters.Add(new FixedValueParameter<ReadOnlyCheckedItemList<StringValue>>(InputVariablesParameterName, ""));
|
---|
| 90 | problemData.Parameters.Add(new FixedValueParameter<IntRange>(TrainingPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
|
---|
| 91 | problemData.Parameters.Add(new FixedValueParameter<IntRange>(TestPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
|
---|
| 92 | problemData.Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariableParameterName, new ItemSet<StringValue>()));
|
---|
| 93 | emptyProblemData = problemData;
|
---|
[5554] | 94 | }
|
---|
| 95 | #endregion
|
---|
| 96 |
|
---|
[8121] | 97 | public IConstrainedValueParameter<StringValue> TargetVariableParameter {
|
---|
| 98 | get { return (IConstrainedValueParameter<StringValue>)Parameters[TargetVariableParameterName]; }
|
---|
[5540] | 99 | }
|
---|
[5601] | 100 | public string TargetVariable {
|
---|
| 101 | get { return TargetVariableParameter.Value.Value; }
|
---|
[10540] | 102 | set {
|
---|
| 103 | if (value == null) throw new ArgumentNullException("targetVariable", "The provided value for the targetVariable is null.");
|
---|
| 104 | if (value == TargetVariable) return;
|
---|
| 105 |
|
---|
| 106 | var matchingParameterValue = TargetVariableParameter.ValidValues.FirstOrDefault(v => v.Value == value);
|
---|
| 107 | if (matchingParameterValue == null) throw new ArgumentException("The provided value is not valid as the targetVariable.", "targetVariable");
|
---|
| 108 | TargetVariableParameter.Value = matchingParameterValue;
|
---|
| 109 | }
|
---|
[5586] | 110 | }
|
---|
[5540] | 111 |
|
---|
[13766] | 112 | public IEnumerable<double> TargetVariableValues {
|
---|
| 113 | get { return Dataset.GetDoubleValues(TargetVariable); }
|
---|
| 114 | }
|
---|
| 115 | public IEnumerable<double> TargetVariableTrainingValues {
|
---|
| 116 | get { return Dataset.GetDoubleValues(TargetVariable, TrainingIndices); }
|
---|
| 117 | }
|
---|
| 118 | public IEnumerable<double> TargetVariableTestValues {
|
---|
| 119 | get { return Dataset.GetDoubleValues(TargetVariable, TestIndices); }
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 |
|
---|
[5554] | 123 | [StorableConstructor]
|
---|
[16462] | 124 | protected RegressionProblemData(StorableConstructorFlag _) : base(_) { }
|
---|
[5601] | 125 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 126 | private void AfterDeserialization() {
|
---|
| 127 | RegisterParameterEvents();
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[6238] | 130 | protected RegressionProblemData(RegressionProblemData original, Cloner cloner)
|
---|
[5601] | 131 | : base(original, cloner) {
|
---|
| 132 | RegisterParameterEvents();
|
---|
| 133 | }
|
---|
[6666] | 134 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 135 | if (this == emptyProblemData) return emptyProblemData;
|
---|
| 136 | return new RegressionProblemData(this, cloner);
|
---|
| 137 | }
|
---|
[5554] | 138 |
|
---|
[5540] | 139 | public RegressionProblemData()
|
---|
[5554] | 140 | : this(defaultDataset, defaultAllowedInputVariables, defaultTargetVariable) {
|
---|
| 141 | }
|
---|
[8528] | 142 | public RegressionProblemData(IRegressionProblemData regressionProblemData)
|
---|
| 143 | : this(regressionProblemData.Dataset, regressionProblemData.AllowedInputVariables, regressionProblemData.TargetVariable) {
|
---|
| 144 | TrainingPartition.Start = regressionProblemData.TrainingPartition.Start;
|
---|
| 145 | TrainingPartition.End = regressionProblemData.TrainingPartition.End;
|
---|
| 146 | TestPartition.Start = regressionProblemData.TestPartition.Start;
|
---|
| 147 | TestPartition.End = regressionProblemData.TestPartition.End;
|
---|
| 148 | }
|
---|
[5554] | 149 |
|
---|
[12509] | 150 | public RegressionProblemData(IDataset dataset, IEnumerable<string> allowedInputVariables, string targetVariable, IEnumerable<ITransformation> transformations = null)
|
---|
[11114] | 151 | : base(dataset, allowedInputVariables, transformations ?? Enumerable.Empty<ITransformation>()) {
|
---|
[5601] | 152 | var variables = InputVariables.Select(x => x.AsReadOnly()).ToList();
|
---|
| 153 | Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariableParameterName, new ItemSet<StringValue>(variables), variables.Where(x => x.Value == targetVariable).First()));
|
---|
[5804] | 154 | RegisterParameterEvents();
|
---|
[5540] | 155 | }
|
---|
| 156 |
|
---|
[5601] | 157 | private void RegisterParameterEvents() {
|
---|
| 158 | TargetVariableParameter.ValueChanged += new EventHandler(TargetVariableParameter_ValueChanged);
|
---|
| 159 | }
|
---|
| 160 | private void TargetVariableParameter_ValueChanged(object sender, EventArgs e) {
|
---|
| 161 | OnChanged();
|
---|
| 162 | }
|
---|
[5540] | 163 | }
|
---|
| 164 | }
|
---|