1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HEAL.Fossil;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents discriminant function classification data analysis models.
|
---|
32 | /// </summary>
|
---|
33 | [StorableType("E7A8648D-C938-499F-A712-185542095708")]
|
---|
34 | [Item("DiscriminantFunctionClassificationModel", "Represents a classification model that uses a discriminant function and classification thresholds.")]
|
---|
35 | public class DiscriminantFunctionClassificationModel : ClassificationModel, IDiscriminantFunctionClassificationModel {
|
---|
36 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
37 | get { return model.VariablesUsedForPrediction; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | [Storable]
|
---|
41 | private IRegressionModel model;
|
---|
42 | public IRegressionModel Model {
|
---|
43 | get { return model; }
|
---|
44 | private set { model = value; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | [Storable]
|
---|
48 | private double[] classValues;
|
---|
49 | public IEnumerable<double> ClassValues {
|
---|
50 | get { return (double[])classValues.Clone(); }
|
---|
51 | private set { classValues = value.ToArray(); }
|
---|
52 | }
|
---|
53 |
|
---|
54 | [Storable]
|
---|
55 | private double[] thresholds;
|
---|
56 | public IEnumerable<double> Thresholds {
|
---|
57 | get { return (IEnumerable<double>)thresholds.Clone(); }
|
---|
58 | private set { thresholds = value.ToArray(); }
|
---|
59 | }
|
---|
60 |
|
---|
61 | private IDiscriminantFunctionThresholdCalculator thresholdCalculator;
|
---|
62 | [Storable]
|
---|
63 | public IDiscriminantFunctionThresholdCalculator ThresholdCalculator {
|
---|
64 | get { return thresholdCalculator; }
|
---|
65 | private set { thresholdCalculator = value; }
|
---|
66 | }
|
---|
67 |
|
---|
68 |
|
---|
69 | [StorableConstructor]
|
---|
70 | protected DiscriminantFunctionClassificationModel(StorableConstructorFlag _) : base(_) { }
|
---|
71 | protected DiscriminantFunctionClassificationModel(DiscriminantFunctionClassificationModel original, Cloner cloner)
|
---|
72 | : base(original, cloner) {
|
---|
73 | model = cloner.Clone(original.model);
|
---|
74 | classValues = (double[])original.classValues.Clone();
|
---|
75 | thresholds = (double[])original.thresholds.Clone();
|
---|
76 | }
|
---|
77 |
|
---|
78 | public DiscriminantFunctionClassificationModel(IRegressionModel model, IDiscriminantFunctionThresholdCalculator thresholdCalculator)
|
---|
79 | : base(model.TargetVariable) {
|
---|
80 | this.name = ItemName;
|
---|
81 | this.description = ItemDescription;
|
---|
82 |
|
---|
83 | this.model = model;
|
---|
84 | this.classValues = new double[0];
|
---|
85 | this.thresholds = new double[0];
|
---|
86 | this.thresholdCalculator = thresholdCalculator;
|
---|
87 | }
|
---|
88 |
|
---|
89 | [StorableHook(HookType.AfterDeserialization)]
|
---|
90 | private void AfterDeserialization() {
|
---|
91 | if (ThresholdCalculator == null) ThresholdCalculator = new AccuracyMaximizationThresholdCalculator();
|
---|
92 | }
|
---|
93 |
|
---|
94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
95 | return new DiscriminantFunctionClassificationModel(this, cloner);
|
---|
96 | }
|
---|
97 |
|
---|
98 | public void SetThresholdsAndClassValues(IEnumerable<double> thresholds, IEnumerable<double> classValues) {
|
---|
99 | var classValuesArr = classValues.ToArray();
|
---|
100 | var thresholdsArr = thresholds.ToArray();
|
---|
101 | if (thresholdsArr.Length != classValuesArr.Length) throw new ArgumentException();
|
---|
102 |
|
---|
103 | this.classValues = classValuesArr;
|
---|
104 | this.thresholds = thresholdsArr;
|
---|
105 | OnThresholdsChanged(EventArgs.Empty);
|
---|
106 | }
|
---|
107 |
|
---|
108 | public virtual void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
109 | double[] classValues;
|
---|
110 | double[] thresholds;
|
---|
111 | var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
112 | var estimatedTrainingValues = GetEstimatedValues(problemData.Dataset, rows);
|
---|
113 | thresholdCalculator.Calculate(problemData, estimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
114 | SetThresholdsAndClassValues(thresholds, classValues);
|
---|
115 | }
|
---|
116 |
|
---|
117 |
|
---|
118 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
119 | return model.GetEstimatedValues(dataset, rows);
|
---|
120 | }
|
---|
121 |
|
---|
122 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
123 | if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current classification model.");
|
---|
124 | foreach (var x in GetEstimatedValues(dataset, rows)) {
|
---|
125 | int classIndex = 0;
|
---|
126 | // find first threshold value which is larger than x => class index = threshold index + 1
|
---|
127 | for (int i = 0; i < thresholds.Length; i++) {
|
---|
128 | if (x > thresholds[i]) classIndex++;
|
---|
129 | else break;
|
---|
130 | }
|
---|
131 | yield return classValues.ElementAt(classIndex - 1);
|
---|
132 | }
|
---|
133 | }
|
---|
134 | #region events
|
---|
135 | public event EventHandler ThresholdsChanged;
|
---|
136 | protected virtual void OnThresholdsChanged(EventArgs e) {
|
---|
137 | var listener = ThresholdsChanged;
|
---|
138 | if (listener != null) listener(this, e);
|
---|
139 | }
|
---|
140 | #endregion
|
---|
141 |
|
---|
142 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
143 | return CreateDiscriminantFunctionClassificationSolution(problemData);
|
---|
144 | }
|
---|
145 | public virtual IDiscriminantFunctionClassificationSolution CreateDiscriminantFunctionClassificationSolution(
|
---|
146 | IClassificationProblemData problemData) {
|
---|
147 | return new DiscriminantFunctionClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
148 | }
|
---|
149 | }
|
---|
150 | }
|
---|