1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Text;
|
---|
27 | using System.Windows.Forms;
|
---|
28 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.MainForm;
|
---|
31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
33 | [View("ROC Curves")]
|
---|
34 | [Content(typeof(IDiscriminantFunctionClassificationSolution))]
|
---|
35 | public partial class DiscriminantFunctionClassificationRocCurvesView : DataAnalysisSolutionEvaluationView {
|
---|
36 | private const string xAxisTitle = "False Positive Rate";
|
---|
37 | private const string yAxisTitle = "True Positive Rate";
|
---|
38 | private const string TrainingSamples = "Training";
|
---|
39 | private const string TestSamples = "Test";
|
---|
40 | private Dictionary<string, List<ROCPoint>> cachedRocPoints;
|
---|
41 |
|
---|
42 | public DiscriminantFunctionClassificationRocCurvesView() {
|
---|
43 | InitializeComponent();
|
---|
44 |
|
---|
45 | cachedRocPoints = new Dictionary<string, List<ROCPoint>>();
|
---|
46 |
|
---|
47 | cmbSamples.Items.Add(TrainingSamples);
|
---|
48 | cmbSamples.Items.Add(TestSamples);
|
---|
49 | cmbSamples.SelectedIndex = 0;
|
---|
50 |
|
---|
51 | chart.CustomizeAllChartAreas();
|
---|
52 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
53 | chart.ChartAreas[0].AxisX.Maximum = 1.0;
|
---|
54 | chart.ChartAreas[0].AxisX.MajorGrid.Interval = 0.2;
|
---|
55 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
56 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
57 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
58 |
|
---|
59 | chart.ChartAreas[0].AxisX.Title = xAxisTitle;
|
---|
60 | chart.ChartAreas[0].AxisY.Title = yAxisTitle;
|
---|
61 | }
|
---|
62 |
|
---|
63 | public new IDiscriminantFunctionClassificationSolution Content {
|
---|
64 | get { return (IDiscriminantFunctionClassificationSolution)base.Content; }
|
---|
65 | set { base.Content = value; }
|
---|
66 | }
|
---|
67 |
|
---|
68 | protected override void RegisterContentEvents() {
|
---|
69 | base.RegisterContentEvents();
|
---|
70 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
71 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
72 | }
|
---|
73 | protected override void DeregisterContentEvents() {
|
---|
74 | base.DeregisterContentEvents();
|
---|
75 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
76 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
77 | }
|
---|
78 |
|
---|
79 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
80 | UpdateChart();
|
---|
81 | }
|
---|
82 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
83 | UpdateChart();
|
---|
84 | }
|
---|
85 |
|
---|
86 | protected override void OnContentChanged() {
|
---|
87 | base.OnContentChanged();
|
---|
88 | chart.Series.Clear();
|
---|
89 | if (Content != null) UpdateChart();
|
---|
90 | }
|
---|
91 |
|
---|
92 | private void UpdateChart() {
|
---|
93 | if (InvokeRequired) Invoke((Action)UpdateChart);
|
---|
94 | else {
|
---|
95 | chart.Series.Clear();
|
---|
96 | chart.Annotations.Clear();
|
---|
97 | cachedRocPoints.Clear();
|
---|
98 |
|
---|
99 | int slices = 100;
|
---|
100 | IEnumerable<int> rows;
|
---|
101 |
|
---|
102 | if (cmbSamples.SelectedItem.ToString() == TrainingSamples) {
|
---|
103 | rows = Content.ProblemData.TrainingIndices;
|
---|
104 | } else if (cmbSamples.SelectedItem.ToString() == TestSamples) {
|
---|
105 | rows = Content.ProblemData.TestIndices;
|
---|
106 | } else throw new InvalidOperationException();
|
---|
107 |
|
---|
108 | double[] estimatedValues = Content.GetEstimatedValues(rows).ToArray();
|
---|
109 | double[] targetClassValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable, rows).ToArray();
|
---|
110 | double minThreshold = estimatedValues.Min();
|
---|
111 | double maxThreshold = estimatedValues.Max();
|
---|
112 | double thresholdIncrement = (maxThreshold - minThreshold) / slices;
|
---|
113 | minThreshold -= thresholdIncrement;
|
---|
114 | maxThreshold += thresholdIncrement;
|
---|
115 |
|
---|
116 | List<double> classValues = Content.ProblemData.ClassValues.ToList();
|
---|
117 |
|
---|
118 | foreach (double classValue in classValues) {
|
---|
119 | List<ROCPoint> rocPoints = new List<ROCPoint>();
|
---|
120 | int positives = targetClassValues.Where(c => c.IsAlmost(classValue)).Count();
|
---|
121 | int negatives = targetClassValues.Length - positives;
|
---|
122 |
|
---|
123 | for (double lowerThreshold = minThreshold; lowerThreshold < maxThreshold; lowerThreshold += thresholdIncrement) {
|
---|
124 | for (double upperThreshold = lowerThreshold + thresholdIncrement; upperThreshold < maxThreshold; upperThreshold += thresholdIncrement) {
|
---|
125 | //only adapt lower threshold for binary classification problems and upper class prediction
|
---|
126 | if (classValues.Count == 2 && classValue == classValues[1]) upperThreshold = double.PositiveInfinity;
|
---|
127 |
|
---|
128 | int truePositives = 0;
|
---|
129 | int falsePositives = 0;
|
---|
130 |
|
---|
131 | for (int row = 0; row < estimatedValues.Length; row++) {
|
---|
132 | if (lowerThreshold < estimatedValues[row] && estimatedValues[row] < upperThreshold) {
|
---|
133 | if (targetClassValues[row].IsAlmost(classValue)) truePositives++;
|
---|
134 | else falsePositives++;
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 | double truePositiveRate = ((double)truePositives) / positives;
|
---|
139 | double falsePositiveRate = ((double)falsePositives) / negatives;
|
---|
140 |
|
---|
141 | ROCPoint rocPoint = new ROCPoint(truePositiveRate, falsePositiveRate, lowerThreshold, upperThreshold);
|
---|
142 | if (!rocPoints.Any(x => x.TruePositiveRate >= rocPoint.TruePositiveRate && x.FalsePositiveRate <= rocPoint.FalsePositiveRate)) {
|
---|
143 | rocPoints.RemoveAll(x => x.FalsePositiveRate >= rocPoint.FalsePositiveRate && x.TruePositiveRate <= rocPoint.TruePositiveRate);
|
---|
144 | rocPoints.Add(rocPoint);
|
---|
145 | }
|
---|
146 | }
|
---|
147 | //only adapt upper threshold for binary classification problems and upper class prediction
|
---|
148 | if (classValues.Count == 2 && classValue == classValues[0]) lowerThreshold = double.PositiveInfinity;
|
---|
149 | }
|
---|
150 |
|
---|
151 | string className = Content.ProblemData.ClassNames.ElementAt(classValues.IndexOf(classValue));
|
---|
152 | cachedRocPoints[className] = rocPoints.OrderBy(x => x.FalsePositiveRate).ToList(); ;
|
---|
153 |
|
---|
154 | Series series = new Series(className);
|
---|
155 | series.ChartType = SeriesChartType.Line;
|
---|
156 | series.MarkerStyle = MarkerStyle.Diamond;
|
---|
157 | series.MarkerSize = 5;
|
---|
158 | chart.Series.Add(series);
|
---|
159 | FillSeriesWithDataPoints(series, cachedRocPoints[className]);
|
---|
160 |
|
---|
161 | double auc = CalculateAreaUnderCurve(series);
|
---|
162 | series.LegendToolTip = "AUC: " + auc;
|
---|
163 | }
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | private void FillSeriesWithDataPoints(Series series, IEnumerable<ROCPoint> rocPoints) {
|
---|
168 | series.Points.Add(new DataPoint(0, 0));
|
---|
169 | foreach (ROCPoint rocPoint in rocPoints) {
|
---|
170 | DataPoint point = new DataPoint();
|
---|
171 | point.XValue = rocPoint.FalsePositiveRate;
|
---|
172 | point.YValues[0] = rocPoint.TruePositiveRate;
|
---|
173 | point.Tag = rocPoint;
|
---|
174 |
|
---|
175 | StringBuilder sb = new StringBuilder();
|
---|
176 | sb.AppendLine("True Positive Rate: " + rocPoint.TruePositiveRate);
|
---|
177 | sb.AppendLine("False Positive Rate: " + rocPoint.FalsePositiveRate);
|
---|
178 | sb.AppendLine("Upper Threshold: " + rocPoint.UpperThreshold);
|
---|
179 | sb.AppendLine("Lower Threshold: " + rocPoint.LowerThreshold);
|
---|
180 | point.ToolTip = sb.ToString();
|
---|
181 |
|
---|
182 | series.Points.Add(point);
|
---|
183 | }
|
---|
184 | series.Points.Add(new DataPoint(1, 1));
|
---|
185 | }
|
---|
186 |
|
---|
187 | private double CalculateAreaUnderCurve(Series series) {
|
---|
188 | if (series.Points.Count < 1) throw new ArgumentException("Could not calculate area under curve if less than 1 data points were given.");
|
---|
189 |
|
---|
190 | double auc = 0.0;
|
---|
191 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
192 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
193 | double y1 = series.Points[i - 1].YValues[0];
|
---|
194 | double y2 = series.Points[i].YValues[0];
|
---|
195 |
|
---|
196 | auc += (y1 + y2) * width / 2;
|
---|
197 | }
|
---|
198 |
|
---|
199 | return auc;
|
---|
200 | }
|
---|
201 |
|
---|
202 | private void cmbSamples_SelectedIndexChanged(object sender, System.EventArgs e) {
|
---|
203 | if (Content != null)
|
---|
204 | UpdateChart();
|
---|
205 | }
|
---|
206 |
|
---|
207 |
|
---|
208 | #region show / hide series
|
---|
209 | private void ToggleSeries(Series series) {
|
---|
210 | if (series.Points.Count == 0)
|
---|
211 | FillSeriesWithDataPoints(series, cachedRocPoints[series.Name]);
|
---|
212 | else
|
---|
213 | series.Points.Clear();
|
---|
214 | }
|
---|
215 | private void chart_MouseDown(object sender, MouseEventArgs e) {
|
---|
216 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
217 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
218 | if (result.Series != null) ToggleSeries(result.Series);
|
---|
219 | }
|
---|
220 | }
|
---|
221 | private void chart_CustomizeLegend(object sender, CustomizeLegendEventArgs e) {
|
---|
222 | foreach (LegendItem legendItem in e.LegendItems) {
|
---|
223 | var series = chart.Series[legendItem.SeriesName];
|
---|
224 | if (series != null) {
|
---|
225 | bool seriesIsInvisible = series.Points.Count == 0;
|
---|
226 | foreach (LegendCell cell in legendItem.Cells)
|
---|
227 | cell.ForeColor = seriesIsInvisible ? Color.Gray : Color.Black;
|
---|
228 | }
|
---|
229 | }
|
---|
230 | }
|
---|
231 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
232 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
233 | if (result.ChartElementType == ChartElementType.LegendItem)
|
---|
234 | this.Cursor = Cursors.Hand;
|
---|
235 | else
|
---|
236 | this.Cursor = Cursors.Default;
|
---|
237 |
|
---|
238 | string newTooltipText = string.Empty;
|
---|
239 | if (result.ChartElementType == ChartElementType.DataPoint)
|
---|
240 | newTooltipText = ((DataPoint)result.Object).ToolTip;
|
---|
241 |
|
---|
242 | string oldTooltipText = this.toolTip.GetToolTip(chart);
|
---|
243 | if (newTooltipText != oldTooltipText)
|
---|
244 | this.toolTip.SetToolTip(chart, newTooltipText);
|
---|
245 | }
|
---|
246 | #endregion
|
---|
247 |
|
---|
248 |
|
---|
249 | private class ROCPoint {
|
---|
250 | public ROCPoint(double truePositiveRate, double falsePositiveRate, double lowerThreshold, double upperThreshold) {
|
---|
251 | this.TruePositiveRate = truePositiveRate;
|
---|
252 | this.FalsePositiveRate = falsePositiveRate;
|
---|
253 | this.LowerThreshold = lowerThreshold;
|
---|
254 | this.UpperThreshold = upperThreshold;
|
---|
255 |
|
---|
256 | }
|
---|
257 | public double TruePositiveRate { get; private set; }
|
---|
258 | public double FalsePositiveRate { get; private set; }
|
---|
259 | public double LowerThreshold { get; private set; }
|
---|
260 | public double UpperThreshold { get; private set; }
|
---|
261 | }
|
---|
262 |
|
---|
263 | }
|
---|
264 | }
|
---|